Smart Graphs

January 8, 2008

Goal

The overall goal of the Smart Graph effort is to help student see what experts see when they look at a graph. Students see a wiggly line where an expert sees a plateau that starts with a small dip and followed by cooling to room temperature. The software would be working well when it passed a Turing Test: you would fail to distinguish whether the description of a graph was generated by the software or an expert. 

This definition limits what the smart graph can do, hopefully making it more feasible. The smart graph would concentrate only on what is seen on the graph. It might postulate about off-graph data (i.e. the absolute minimum may be off-screen), but it would focus on what is seen. It would also deal exclusively with (x,y) pairs, not functions. If a function was needed, other software would convert it into 100 or so (x,y) pairs within the x-range shown in the graph. The emphasis would be on qualitative features, not actual x-y values, although they might be used occasionally. The smart graph is not intended for blind or vision-impaired students, so it does not have to describe every detail or read x-y pairs. 

Interaction Types

The software would be able to describe features of any graph and use these descriptions to interact with the student in various ways. 

The input data would be sets of x-y pairs and scale information for the x and y axes (min, max, linear/log, name, units, unit abbreviation, and possibly other data such as the name of the derivative.) Each function would have a descriptive name, also. The descriptions generated by the software would be used several ways. It could support the following kinds of interactions:

Describe. Generate text descriptions of the entire graph at various levels of detail. Only the major features of the graph would be described at first, but then more details would be available. 

Look here. The graph would highlight a few sections of the graph that are particularly important. The user could click on a highlight and find out what all the fuss is about. 

Left-right. The software could describe the prominent features of a graph while moving the cursor from left to right across the x-axis. The user could select how much detail to request. (The cursor would not have to move at a constant rate—that gives problems with features are dense—it could glide quickly between features.)

Find (i.e. “where is the max?”). The software could ask the user to point to a place or region where the software has found one of the features. The highest priority features would be quizzed first. 

Tell me. The user could select a feature from a list of features that the software found and the software could highlight the range(s) of the graph(s) that illustrate that feature. At first, only the highest priority features would be listed. 

What’s this? (i.e. “what is important about this point/region?”) The software could highlight a region and ask the user to select one or more of the features from a list of features that might describe this region. Again, regions with high-priority features would be selected first and high-priority features would be put on the list of possible right answers. 

What’s here? The user could move the cursor to a point or region and ask the software what features are present there. The software would be smart enough to list one most important feature initially and to provide others if pressed. 

The activity author would determine which of these kinds of interactions was supported for any particular graph. When describing features of a graph, the software would use the names of the variables and functions and their units, where appropriate. Thus, it could say “The temperature of the mug that started at 30° was always at least 7° C above the temperature of the mug that started at 20°.” In this example, the software would find “temperature” in the description of the vertical axis, “the mug that started at 30°” was in the name of one of the functions, “always” was generated because the greater-than feature was true for the entire x-axis, the “7” would be generated by the greater-than feature software, and “° C” would be obtained from the vertical axis information. 

Features

The key to the smart graph would be a database of “features” that will be recognized by the software on the basis of one or more functions in a graph. The software would look for “features” of a graph of a function or group of functions. Each feature found would generate the following data for each instance of each feature:

The feature type (i.e. max)

Text used to describe the feature. (i.e. “maximum,” or “fastest increase in [y-axis name.])

Which function it refers to. It could be features of one function (i.e. max) or of two (i.e. where functions 2 and 4 cross.)

The range of values of the independent variable where that feature is found. A max might have a zero-length range (e.g. [3.4,3.4]) , the “noisy” feature might apply to the entire range, and the “linear” feature might start at 3.5 and end at 5.0. 

The strength of the feature. Many features would be dichotomous (found or not found) but others, like noise, might be assigned a numerical value based on how strong the feature is. 

Auxiliary data. (i.e. the value of the max, the frequency of the periodic section.)

A particular feature might generate multiple database entries (i.e. several local maxima). 

Here are some possible features of graphs:

Absolute min or max on-screen in graph. (Excludes min or max at visible edges or off-screen)

Absolute min or max at edge of screen. 

Relative min or max on screen in graph. A maximum (minimum), but not the largest (smallest) on screen. 

Relative min or max at edge of screen. 

Overall shape is linear rising (or falling)

Overall shape is (-shaped (or (-shaped)

Monotonic rising (falling)

Horizontal range (e.g. range where the graph is approximately horizontal).

Linear range. (where the slope is approximately constant)

Rising (falling) range.

Max positive (negative) slope. 

Curving upward (downward) range. 

Noisy range. 

Exponentially rising (falling) range

Range approaching a horizontal (vertical) asymptote. 

Possible blunder (one or two points way out of line)

Discontinuity in value. 

Discontinuity in slope. 

Zero values. 

Y-axis intersection. 

Intersections of graphs (for all pairs of graphs)

Range where one graph is above (below) another. 

Off-scale ranges. 

Periodic (dominant frequency).

X-values differences are all the same. 

Properly designed, additional features could be added to the system relatively easily. Software for each feature type would have its own method of identifying its feature in the functions and outputting values to the database. 

Generating Descriptions from Features

The Smart Graph would need to generate descriptions of the features in the database. A description can be made into a statement of fact or a question (i.e. the description “the maximum temperature” with its associated feature data could be made into “The maximum temperature is here” “The maximum temperature is 37°”or “Click on the maximum temperature.”)

Some descriptions of features could be generated directly from an entry in the database. An example might be the description of the maximum of a single graph. Others descriptions might require some simple calculations, such as the first point where the velocity was zero. We might generate a long list of possible descriptions and order them by the priority of the features they describe. Still, for any particular lesson, the required description might not be available. Eventually, we’d need a simple scripting or calculation facility so that authors could generate new descriptions. It would be easy to overwhelm students with these descriptions, so some way of prioritizing them is needed. 

Prioritizing Descriptions

The author of an activity could specify which features were important for each graph in a learning activity. For a lesson on friction, it might be most important to identify where the motion stopped (the graph first became horizontal). The associated “horizontal” feature would be given the highest priority, “curve up” and “slope down” features might be given moderate levels, and everything else low but non-zero levels. (Making them non-zero might catch unexpected data. For instance, if the “noise” feature detected a high value, it might be described and alert the user that there is more noise than expected.)

For each graph in a learning activity, each feature would have a numerical “importance.” Defaults would be provided for general use. We’d develop a way of combining the “importance” and “strength” data (multiply them?) to prioritize which features were most important for a particular lesson and presented first to students. 

For descriptions that depend on single features, the description of a feature would inherit the priority of the feature. For descriptions that depended on multiple features, the description would be given a priority based on the priorities of the features (sum? average?). (Fortunately these priority calculations do not need to be precise, just approximate so that the most important features rise to the top.) The resulting descriptions of features would be presented to students in rank order. This would avoid information overload, but still make relatively obscure observations available to the curious student. 

