
A Brief Description of the SAIL Environment
Stephen Bannasch and Robert Tinker
July 31, 2008

O V E R V I E W

SAIL (the Scalable Architecture for Interactive Learning) is both a framework and a collection of
applications and databases that permit non-programmers to create, modify, discover, and deploy from the
Web dynamically created learning activities with embedded highly interactive simulation, modeling,
probeware, graphing, and analysis components. All the work a learner does while interacting with a SAIL
client-based activity—visiting pages, answering questions, creating a drawing, investigating a model,
collecting data from probes—is saved over the network and is available for the learner when the activity
is run again. In addition, all the learner's work is available for a teacher or researcher to review.
The current SAIL framework, which is an outgrowth of the NSF-funded Web-based Inquiry in Science
Environment, has been developed by the NSF center for Technology Enhanced Learning in Science
(TELS) as an optimal environment for the development of inquiry learning investigations. SAIL
represents the product of over a decade of prior research into technology-enhanced student learning.
Technologists at the Concord Consortium and U.C. Berkeley have been leading SAIL development for
the past several years.

S A I L A R C H I T E C T U R E

There are two key ideas in SAIL. One involves and architecture for assembling reusable, pedagogically-
aware Java components into curricular activities. These rich components already include:

Computational models with rich visual representations. These include, among others, molecular dy-
namics and biological models.

Graphs for displaying both real-time and saved data.
Sensor collection components for collecting and graphing real-time data from sensors as well as ana-

lyzing data collected previously.
Drawing tools that support a range of formats from a simple bitmapped painting, to object drawing, to

concept mapping.
Models written in general purpose-modeling languages such as NetLogo.
Assessments ranging from multiple-choice to open-response text input.
Components that can render web content ranging from html, css, to flash and QuickTime. While

browsers are capable of this, there are many times in which web content may need to be delivered
in a more constrained environment which does not necessarily allow browsing to other sites.

The integration of the many forms of web content and interaction with the more powerful modeling
and analysis tools that are available in Java to deeper learner exploration and inquiry and the cre-
ation of both richer explicit and implicit learner artifacts.

The second key idea is that SAIL delivers these components a network-enabled pedagogically-aware
persistence service that lets the components load and save learner data. The underlying SAIL architecture
takes care of storing a complete revision history of what has been saved and also makes sure that the data
are associated with the correct student, workgroup, class, and teacher. This persistence is supported by the
core SAIL framework that is included with the client application and the SAIL Data Service (SDS) web
service.
The SDS is designed to integrate with existing web portals to allow them to easily deliver SAIL-based

activities to learners, persist the learner data, and report back to he main portal. At this time, the SDS is
supporting the TELS WISE portal as well as Concord Consortium's TEEMSS2 Do-It-Yourself portal.
These are two completely different portals with different underlying architectures integrated with SAIL
and the SDS to support authoring and deploying SAIL-based curricula.
Jim Slotta developed the SAIL concept and
leads further development of it at Berkeley
and Toronto. Concord Consortium, under
Stephen Bannasch’s leadership has been the
technical lead on the SAIL and SDS
persistence integration as well as the author
of many of the modeling components.
Concord has also developed a scripting
environment and framework called
Pedagogica that supports dynamic
adaptation of component presentation and
interaction to learners based on learner
actions and data. For simplicity, we are
using the term “SAIL Environment” to refer
to all the supporting software, the SAIL
framework, SDS, the scripting
environment, and Pedagogica.

C R E A T I N G A C T I V I T I E S

We have created several SAIL activity
editors that can allow materials developers
to combine components into complete
learning experiences, which we call SAIL
learning activities. The activities that are
produced can start life as blanks or recycled
activities.
The editors reflect the specific needs of
different projects at CC and the growing
capacity of the software.
The following editors have been created at
CC. Other editors can be easily developed
that give different appearance and provide
different affordances.

The DIY ITSI Editor
This editor creates single pages in a format
consisting of a fixed sequence of sections.
For each section, the user simply fills
content (or changes) into forms and selects
options. The user can preview each section
in the authoring environment. An activity
typically requires a fraction of a class
period. Figure 1 is an example of editing
the Collect Data section of an activity of an
ITSI activity in a web browser.

The SAIL Environment page 2

Figure 1: The DIY ITSI Editor. This shows one section of a
page with the user input in Textile and the resulting rendering.
It also shows a section where the author can select a model or
probe.

Figure 2: A WYSIWYG editor. In this example, the author
has inserted some text and a graph object.

This editor is the first we created in the SAIL Environment and its relative simplicity has unleashed
enormous creativity. Our staff recreated materials from several different collections using this editor,
creating over 100 short activities. Teachers in our workshops used these as starting points and created
over 100 additional meaningful customizations. Other projects have begun using this editor as a way of
testing ideas quickly.

The WYSIWYG Editor
We have created a WYSIWYG editor that uses a “flow” metaphor, permitting objects and text to be
intermixed on the page. In this editor, large objects such as models and graphs, are treated as large letters
that are placed on the page as text would be. Figure 3 illustrates this editor.
An important feature of this editor is that outputs generated by one component can be attached to inputs
to another. This creates interesting possibilities of combining different components. Thus, for instance, it
is possible to connect the output of a data collector to a graph. It is also possible to connect the data
collector output to a dynamic model that can represent the state of the atoms in the system being
measured. A graph sketch generated by a student can generate an output that controls the motion of an
object such as a car or walking person.
Figure 3 illustrates how an author can change the data collector in Figure 2 to collect data from a sensor.
Note that no programming is required. Similar panels allow the user to define data flows from any
component to another.

PAS—Project Activity Steps.
The PAS editor is designed to generate compound activities that function like older WISE “projects,”
creating multi-day projects from activities. A WISE project consists of multiple activities and each
activity consists of several steps. Because the new PAS editor uses the SAIL Environment, PAS creates
WISE projects that can persist data. This means that a student can quit mid-project and resume later at the
same point, even using a different computer. This was not possible with earlier versions of WISE.
Additional enhancements have been added, justifying calling the products of PAS “WISE 3” activities.
Figure 4 illustrates a WISE 3 activity generated from the PAS editor.
Currently, the PAS editor cannot place multiple components in a step, although components can consist of
Molecular Workbench, NetLogo, or ITSI activities which themselves can contain multiple components

The SAIL Environment page 3

Figure 3. Editing the graphing object in the WYSIWYG
editor. At left is a control panel with selections that give
the student view above. The operation, initial
configuration, and appearance of the graph are all
controlled from the panel.

created using their own editors. It
is also the case that the PAS editor
cannot now be used to define real-
time data flows from one
component to another.

T H E T O O L S A N D
C O M P O N E N T S

The editors described in the
previous section assemble learning
activities from tools and other
components. One of the strengths
of SAIL is that the growing number
of compatible components can be
used by any of the editors. In
addition, in some cases the
components can be combined and
share data.
For compatibility, SAIL
components have to use a
consistent API (application
program interface) called OTrunk.
OTrunk has been developed at CC to connect arbitrary objects that can be imagined as being pulled out of
a trunk. This section briefly describes the major SAIL components currently supported with OTrunk
interfaces. Any one or combination of these objects can be used by the editors to create learning activities.

CCGraph
CCGraph is a powerful and flexible grapher that can display line, scatter, or bar graph data collected from
sensors, generated with equations or models, imported from a spreadsheet, entered into a data table or
sketched by hand. The graph scales can be easily changed, annotations affixed to the graph, and drawings

The SAIL Environment page 4

Figure 4. WISE 3 authored using the Project Activity Steps editor. A
step is shown on the right and located within the activity structure on
the left.

Figure 5. CCGraph showing data collected from a force
sensor. The student has used the annotation function to
highlight a part of the graph.

Figure 6. CCTable supports both displaying and
entering data.

added. Exciting new functions are under development that will add functionality to all software that uses
the grapher. See Fiture 5.

CCDraw
Based on CCGraph this is drawing program that can be used by itself or used to annotate other objects.

CCTable
This is a simple table that can be used to enter or
display data. See Figure 6.

Standard Queries
A set of components support open responses, multiple-
choice items, and check lists.

Custom Queries
Any standard query can be customized so that the
student response uses any other object that saves state.
Variations of these include open response where the
response is a drawing, or a prediction graph. See Figure
7.

Scaffolded Queries
This is a query form that supports variable scaffolding. A single scaffolded query contains of one question
and multiple hints each identified with a different “level.” The user can be allowed to sequence through
the levels, or the teacher can decide what level is appropriate for a given student. This can be used to
provide differentiated instruction. Figure 8 illustrates two levels for the same question.

SnapShot Album
These support taking and annotating snapshots of
the state of any embeddable object. The annotated
snapshots are dropped into an album object which
supports further annotation, ordering, and
deletion.

LabBook
This is similar to the SnapShot Album however
the content selected by the learner to save is stored
in a document form as though it was saved to disk.
This allows the learner to use the application that
generated the data to edit the content.

Probeware
The probeware component supports collecting

The SAIL Environment page 5

Figure 7. Some of the queries that can be
generated by the custom query object.

Figure 8. Two different levels for the same question. The meaning of the levels can be set by the author.

Figure 9. Output from the probe data collector
component can be sent to CCGraph as shown.

data in real time from a range of probes. Most common probe types connected through seven different
interfaces manufactured by five different vendors are supported. It is straightforward to add more probes
and interface types. Figure 9 shows part of an activity using the data collector generating data that is
displayed in real time using CCGraph.

Molecular Workbench.
Almost any Molecular Workbench model can
be easily embedded into SAIL. At this time
over 200 MW models have been embedded.
These cover topics as diverse as Brownian
motion, latent heat, change of state,
stoichiometry, elastic collisions, and
pendulum motion. There are hundreds more
high quality models available for use. It is
straightforward to create more using the
powerful and mature MW authoring
environment.

NetLogo.
As with MW, almost any NetLogo model can
be easily added. Currently 25 NetLogo
models have been embedded covering topics
as diverse as sheep population, heat diffusion, and global climate change. See Figure 11.

BioLogica.
This is a widely-used genetics and evolution
model developed at CC that simulates
classical genetics at the molecular,
phenotype, individual, and population level.

PhET Simulations
The Physics Education Technology (PhET)
group at the University of Colorado has
developed a large number of open source
science model written in Java. Currently, we
have interfaced the PhET Circuit
Construction Kit as well as the Wave
Interference, Sound, Faraday, Discharge
Lamps, and Energy Skate Park. Many others
could easily be added.

Seeing Math Algebra Interactives
We have adapted five of the Algebra
Interactives created at CC by a middle school
math project. These include the Qualitative
Grapher, Linear Transformer, Function Analyzer, and Quadratic Transformer.

Mozilla
We have integrated the Mozilla web framework (FireFox) into Java. Using it, authors can include web
content into an activity. In addition the scripts that control the display of the pages are accessible to Java
allowing dynamic content modification appropriate for the learner.

The SAIL Environment page 6

Figure 10. A Molecular Workbench page containing the
MW engine and other components.

Figure 11. A NetLogo model in an activity created by the
DIY editor.

Flash
An author can include any component that
can be embedded into FireFox, including
Flash applications. In addition, as long as
the embeddable object supports the
functionality, we can both set and read
values in the object. For example, we can
use the state of an evolving MW model
showing a microscopic simulation to drive
a Flash animation showing a macroscopic
representation. Figure 12 illustrates a
simple model in SAIL.

E X E C U T I N G A C T I V I T I E S

The learning activities have properties that
generated through student use. Some of
these are explicit such as answers to
questions, while many are implicit such as
how many times the student used he model
and what variables they changed while
trying to solve the challenge.
The activity sends data to the SAIL Data
Service (SDS) as soon as a student
completes an action. In normal use, if a
registered user aborts the activity, it can be restored later to its last-saved state for that user from any
computer. Processes running in the SDS analyze the data and generate student performance data.
Performance data is sent to a teacher portal where it is displayed. For UDL applications, the teacher portal
can generate modifications in the activity to match individual student needs. Other processes can generate
data for a research portal.
We associate metadata with each activity. Currently this includes use and publication (public/private) data
only. We plan to add

Descriptive data: Grade, topic, standards, etc.
Teacher guide: Description of content, background, student misconceptions.
Assessments: Student assessment strategies and actual items.
Evaluation data: Review results, pre-post student gains.
Provenance: Authors, revision history, reasons for revisions.

We are working on two teacher portals that can display SAIL data. One is an outgrowth of the WISE work
and one serves the needs of several current CC projects.

R E F E R E N C E S

Software Models and Simulations:
 PhET Interactive Physics Simulations
 Physics Education Technology project at the University of Colorado:
 http://phet.colorado.edu/web-pages/index.html.
 Molecular Workbench

The SAIL Environment page 7

Figure 12. An embedded Flash application modeling plant
biology running in a SAIL Java activity.

 http://mw.concord.org/modeler/index.html
 Seeing Math Algebra Interactives
 http://seeingmath.concord.org/sms_interactives.html
 WISE—Web-based Inquiry in Science Education
 http://wise.berkeley.edu/
Ongoing CC projects using this these frameworks:
 TELS, Center for Technology Enhanced Learning in Science:
 http://www.telscenter.org/
 ITSI, Information Technology in Science Instruction:
 http://itsi.portal.concord.org/
 LOOPS, Logging Opportunities in Online Programs for Science
 http://confluence.concord.org/display/LOOPS/Home
 UDL, Universal Design in Science Education
 http://udl.concord.org/
 CAPA, Computer-Assisted Performance Assessment
 http://capa.concord.org/
 Geniquest
 Genomics Inquiry through Quantitative Trait Loci Exploration with SAIL Technology
 http://confluence.concord.org/display/GEN/Home
Technology Frameworks:
 SAIL, Scalable Architecture for Interactive Leaning
 http://www.telscenter.org/confluence/display/SAIL/Home
 OTrunk, Object Trunk:
 https://confluence.concord.org/display/CSP/OTrunk

C I T A T I O N S

The SAIL Environment page 8

	A Brief Description of the SAIL Environment
	The DIY ITSI Editor
	The WYSIWYG Editor
	PAS—Project Activity Steps.
	CCGraph
	CCDraw
	CCTable
	Standard Queries
	Custom Queries
	Scaffolded Queries
	SnapShot Album
	LabBook
	Probeware
	Molecular Workbench.
	NetLogo.
	BioLogica.
	PhET Simulations
	Seeing Math Algebra Interactives
	Mozilla
	Flash

