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C U M U L A T I V E  L E A R N I N G  U S I N G  E M B E D D E D  

A S S E S S M E N T  R E S U L T S  ( C L E A R )  

Summary. This is a full research and development project responding to the DRK12 so-
licitation NSF08502, focused on the contextual challenge of using assessment of relevant 
STEM content to improve K-12 teaching and learning.  

CLEAR will take advantage of new technologies and research findings to investigate 
ways that science assessments can both capture and contribute to cumulative, inte-
grated learning of key concepts in middle school courses. The project will research new 
forms of assessment that document students’ accumulation of knowledge and also 
serve as learning events. CLEAR will use quasi-experiments (cohort comparisons) and 
randomized classroom comparisons to determine what combinations of instruction and 
assessment enable middle school students to gain cumulative understanding of energy 
concepts in science, and whether the project’s approach when used in one course im-
pacts progress in the next. The project will put design principles from across the field to 
the test, determining instruction and assessment strategies that encourage cumulative 
understanding and help learners develop integrated ideas about science. 

Intellectual Merit. There is an urgent need to develop accurate student assessments 
that measure cumulative knowledge while eliminating the disruptions caused by tests. 
By measuring students’ developing understanding as it is integrated with ideas from 
prior learning, the project will be able to foster coherent learning. The project will do 
this by making assessment an integral part of computer-based curricula. Because of 
prior and ongoing work, the partners are in a unique position to combine assessment 
with the best research-based instructional resources and tools to create unified elec-
tronic environments with unprecedented power to measure student learning. 

The partners have a quarter-century record of important research and innovation that 
has made seminal contributions to research and practice in science education. This pro-
ject is a logical continuation of their research, applying the results, technologies, and de-
signs that were developed in prior work to the development of a new conception of 
curriculum and assessment that will foster cumulative learning.  

Broader Impact. By aligning assessment and instruction around the goal of promoting 
understanding, the project will demonstrate how to improve learning outcomes for any 
STEM course while also making them more effective and efficient by converting as-
sessment from a time-wasting, curriculum-limiting chore into an integral part of learn-
ing that fosters the accumulation of concepts across topics and grades. The results of the 
proposed research will have an important bearing on the design of effective all-
electronic media, which are undoubtedly going to replace texts as technology continues 
to drop in price.   

The project is designed to have a major impact by undertaking the kind of careful, sta-
tistically valid research design that leads to reproducible results that can support policy. 
The project will be able to tailor instruction to specific learners, increasing the impact on 
students at risk for failure. The partners will continue their practice of widely dissemi-
nating findings, materials, and open source software through reviewed and popular 
papers, talks, its website, and newsletters.  
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C U M U L A T I V E  L E A R N I N G  U S I N G   
E M B E D D E D  A S S E S S M E N T  R E S U L T S  ( C L E A R )  

Marcia C. Linn, Robert Tinker, Kathy Benemann, Hee Sun Lee, Ou Lydia Liu, & James Slotta 

DESCRIPTION AND FRAMING  

Cumulative Learning using Embedded Assessment Results (CLEAR) will take advantage of new 
technologies and research findings to investigate ways that science assessments can both capture and 
contribute to cumulative, integrated learning of key concepts in middle school courses. We will re-
search new forms of assessment that document students’ accumulation of knowledge and also serve 
as learning events. Aligning assessment and instruction around the goal of promoting understanding 
can improve learning outcomes and make any STEM course more efficient.  

We define cumulative learners as students who build on the ideas they have learned and use the 
knowledge gained in one course when they take the next course. Cumulative learners maintain their 
science knowledge by applying it in their courses and everyday lives. Today most students are only 
tested on the topics they studied in the latest unit and often quite superficially; there is seldom the 
expectation of applying concepts learned in prior material.  

This project builds on the partners’ substantial prior research on the advantages of computer-based 
resources in teaching and learning. Because of prior and ongoing work, we are in a unique position 
to combine research-based instructional resources and tools into a unified electronic environment. 
This allows us to create learning opportunities of unprecedented power, to track in detail how indi-
vidual students use these opportunities, and to assess their cumulative knowledge. 

This work will be guided by a theoretical framework called Scaffolded Knowledge Integration, a 
constructivist view that has been refined in empirical studies over more than 20 years (Davis, 2003; 
Davis & Krajcik, 2005; Linn, 1995; Linn, Davis, & Bell, 2004; Linn & Eylon, 2006; Quintana et al., 
2004). This framework draws on longitudinal case studies of students developing cumulative under-
standing (Linn & Hsi, 2000). The framework is the basis of design principles (Kali, 2006) that guide 
the development of software resources that promote integrated understanding (Linn, Clark, & 
Slotta, 2004) such as those used in the proposed work.  

The National Science Education Standards (NRC, 1996; 2000) call for unifying concepts and proc-
esses that (a) provide connections between and among traditional scientific disciplines, (b) are fun-
damental and comprehensive, (c) are understandable and usable by people who will implement sci-
ence programs, and (d) can be expressed and experienced in a developmentally appropriate manner 
during K-12 science education (p.115). Most science teachers endorse the notion of unifying or 
crosscutting concepts (Varma et al., in press). To test our own approach to this challenge, we will 
focus on the cross-cutting concept of energy, one of several possible unifying concepts that must be 
developed progressively over multiple grades.  

CLEAR will study the impact of powerful, coherent assessments and instruction across middle 
school science classes in two- and three-year cohort studies. CLEAR will provide solid evidence for 
design principles that promote cumulative learning, develop an item bank of tested assessments 
items and tasks, and document the impact of context and experience factors. The research program 
will investigate assessments that improve cumulative learning by: 

Developing valid and useful assessments to measure and promote cumulative learning. 
CLEAR will create assessments for energy concepts for 6th and 7th grade that capture cumula-
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tive accomplishments and also serve as learning opportunities. The assessments will take ad-
vantage of powerful technologies that are also features of the instructional materials. The on-
line environment will administer the instruction and assessments, log student activities, and 
incorporate logged data into student guidance. The environment will track student progress in 
embedded, pre-post, and annual assessments. We will validate (Cronbach & Meehl, 1955; 
Embretson, 2007; Lissitz & Samuelsen, 2007; Messick, 1989; Mislevy, 2007) the new assess-
ments by determining their ability to predict cumulative learning. We will compare the proper-
ties of the items by comparing them to widely used state and international tests. 

Developing instructional materials to integrate energy ideas. CLEAR will create computer-
based energy units for 6th and 7th grade that integrate core energy ideas across the relatively in-
coherent state standards. Informed by the knowledge integration framework, the curriculum 
will guide students to explore standards-based energy topics such as “when fuel is consumed, 
most of the energy released becomes heat energy,” (CA 6th grade standards). Instructional ma-
terials will implement research-based strategies for promoting coherence and exploiting the 
electronic learning environment. Teachers will access student work in a portal that allows criti-
cal formative feedback and customization of the learning environment. 

Testing strategies for encouraging cumulative learning. Research from the learning sciences 
has now demonstrated the impact of several instructional strategies in promoting cumulative 
understanding. We will test these strategies in the context of complex science learning: dy-
namic, interactive visualizations (Linn et al., 2006; Pallant & Tinker, 2004), distributed (rather 
than massed) instruction (Bjork, 1999), explanation questions (Richland et al., 2007), opportu-
nities for students to represent their ideas about the links between concepts, inspired by re-
search on concept maps (Novak, 1995; Schwendimann, 2007), multiple tests with or without 
feedback (Carpenter et al., in press; Roediger & Karpicke, 2006), and opportunities for stu-
dents and teachers to debate a topic (Clark & Sampson, in press). 

Establishing classrooms for formative testing and research. CLEAR will work with four 
middle schools that serve diverse students. One teacher-designer per grade level will partici-
pate in the design team to create the pilot version of the materials, enact the instruction, ana-
lyze student responses, help with revisions, and mentor new teachers.  

Engaging teachers in supporting cumulative learning. CLEAR will interview teachers ini-
tially to gather their thoughts about cumulative understanding of science, energy as a unifying 
concept, and the impact of current assessments on their practice. CLEAR technologies have 
the capability of giving teachers regular summaries of student progress at varied levels of 
analysis We will track teacher views about assessment and cumulative understanding as they 
gain experience with CLEAR materials. 

RATIONALE AND RESEARCH QUESTIONS 

Science standards call for inquiry skills leading to cumulative understanding (AAAS, 2007) but most 
state, national, and international tests emphasize the topics and create very few items measuring 
connections across topics or ability to use science knowledge in new contexts (National Assessment 
Governing Board, 2004; Organization for Economic Co-operation and Development, 2005; 
Schmidt, Raizen, Britton, Bianchi, & Wolfe, 1997). Many researchers and policymakers complain 
that current assessments only ask for isolated science ideas rather than emphasizing the connections 
among ideas (Pellegrino et al., 2001; Shepard, 2000; Songer, 2006). As a direct consequence of the 
assessment design, teachers are motivated to emphasize details rather than connections and to drill 
students on multiple choice items (Au, 2007). To change this situation we need to align curriculum 
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and assessment to promote cumulative learning and to demonstrate to teachers and policy makers 
that kind of instruction is efficient and engaging.  

Strategies to promote cumulative learning. We will investigate six promising strategies for com-
bining instruction and assessment to improve cumulative understanding:  

• Dynamic, interactive software. Computational models and probeware will provide environ-
ments for guided 
inquiry that can 
help students build 
coherent 
understanding of 
complex topics 
(Casperson & Linn, 
2006; Collela, 
Klopfer, & Resnick, 
2001; diSessa, 2000; 
Edelson, 2001; 
Hegerty et al., 1999; 
Hegerty, 2004; Linn 
et al., 2006; Pallant 
& Tinker, 2004; 
Wilensky & Re-
isman, 2006) To 
enhance coherence, 
a limited set of tools 
will be used 
consistently (See Figure TELS Module.  

• Distributed (rather than one-shot) experiences. Spacing, rather than massing, learning materi-
als increases long-term retention (Cepeda et al., 2005, in press; Pashler et al., 2007; Thios & 
Agostino, 1976; Tzeng, 1973). 

• Activities that require respondents to generate an explanation rather than select a response 
from multiple choices. Answers generated by students based on their prior knowledge are re-
tained much better than selected, listened, or read materials (Slamecka & Graf, 1978; Jacoby, 
1978; deWinstanley, 1995; Pesta et al., 1999).  

• Concept maps that challenge students to explore and represent their ideas about a topic 
(Novak, 1995; Schwendimann, 2007). Our approach, using a new tool called MySystem, will 
support cognitive or quantified relationships in student representations, drawing from the 
research on Model-It (Metcalf, 1999) and other systems modeling tools (Hogan & Thomas, 
2001; Mandinach & Cline, 1996).  

• Repeated opportunities for assessment with and without feedback. Some studies suggest that 
testing events without feedback are more useful that review of information or feedback 
(Roediger & Karpicke, 2006). Several research programs conducted with undergraduates and 
very short retention intervals suggest that prompt and corrective feedback can help students 
retain information (Butterfield & Metcalfe, 2001; Kulhavy, 1977; Kulik & Kulik, 1988; Pash-
ler, Zarow, & Triplett, 2003; Schmidt, 1991; Schmidt, Young, Swinnen, & Shapiro, 1989; 

Figure. TELS Module with Molecular Workbench Visualization and Note. 
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Sloane & Linn, 1998; Winstein & Schmidt, 1990). CLEAR will be able to contrast these ap-
proaches to investigate the role of feedback in complex science learning. 

• Opportunities for scientific argumentation. When students and teachers respond to each 
other’s ideas about a topic they learn to distinguish among ideas. Students who commit to a 
view and critique the views of their peers using evidence from their investigations to support 
their ideas articulate integrated ideas (Clark & Sampson, in press).  

Each of these strategies has been demonstrated in numerous empirical studies, set in a variety of 
laboratory and classroom designs. We will explore the conditions under which each of these inter-
ventions can grow in sophistication with the science topic as instruction progresses throughout any 
given science course or from course to course. For example, assessments using interactive visualiza-
tions offer great promise as both measures of student learning and instructional opportunities. We 
will log student interactions with the visualization and explore ways to provide feedback to students 
and teachers that promotes cumulative understanding. We will identify combinations of instructional 
activities, embedded assessments, and annual assessments that jointly encourage cumulative learning 
and provide valid, reliable indicators for students, teachers, and policy makers. 

Focus Concept–Energy. We selected energy as a focus, because it is foundational to science and 
because it is opaque in the current curriculum. Our proposed research is equally applicable to other 
cross cutting topics such as evolution, atoms and molecules, or force and motion. Energy is a ubiq-
uitous aspect of science and provides a powerful organizer for learning (see AAAS, 1994, 2001, 
2007; NRC, 2000). Many characteristics of energy create confusion: it is intangible, difficult to meas-
ure, and cannot be given an absolute value in many contexts. Because it is difficult, the standards 
often treat energy superficially. A deeper understanding of energy could simplify learning of other 
topics that appear unrelated but can be understood through energy considerations.  

Research Questions. To achieve a coherent curriculum that enables cumulative learning we need 
to understand how students integrate their ideas in science classes, how they use these ideas in the 
next class, and how their science classes impact their lives. CLEAR contributes to this challenge by 
addressing two research questions: 

Research Ques tion : What combinat ions  o f  inst ruc t ion  and assessment  enable  s tudents  to  gain  
cumulat ive  unders tanding o f  s ci ence? 

To address this question we will test the strategies described above for 6th and 7th grade topics of 
energy. We will collaborate with teachers to design materials and study how teachers interpret pro-
gress. We will test and refine our ideas in successive cohorts of students. We will compare cohorts 
using CLEAR materials to a cohort who studied the typical curriculum with the same teachers. We 
will use Item Response Theory (IRT) and Hierarchical Linear Modeling (HLM) to assess the impact 
of strategies intended to increase cumulative learning. 

Research Ques t ion : How can ins t ruc t ion  and assessment  in one course  impac t  the  next? 

We will design new item formats that ask students to connect energy ideas across topics in the cur-
riculum, informed by our research on how students integrate their ideas. In prior studies we have 
identified ways that students connect ideas and developed items that tap this process for a few topics 
(Clark & Linn, 2003). CLEAR will build on these ideas and investigate technology-enhanced items 
to connect content from one topic to content from another topic. We will explore this question by 
studying how energy topics in 7th grade could benefit from treatment in 6th grade that anticipates fu-
ture instruction. We will use IRT models to capture student trajectories and identify effective item 
formats. 
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Figure. Delayed Posttest. 
Results for the Chemical reactions (CR) module, Electro-
statics module (EL), Meiosis module (MEIO), Evolution 
module (EV), and Total Group. 
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PRIOR SUPPORT 

Our prior research in the Technology-Enhanced Learning in Science (TELS) Center for Learning 
and Teaching (NSF Grants ESI-0334199) has explored the development of instruction and assess-
ments grounded in cognitive science research (Linn, Lee, Tinker, Husic, & Chiu, 2006) that is sensi-
tive to inquiry instruction (Clark & Linn, 2003; Lee, Liu & Linn, 2008) and psychometrically rigor-
ous (Liu, Lee, Hofstetter, & Linn, in press). Using the knowledge integration framework we created 
modules and assessments that tap the connections students make among their ideas. (See 
http://telscenter.org/). We have also created cyber-infrastructural resources that enable this work. 

Impact of TELS modules. TELS benchmark assessments were used in a cohort comparison study 
to compare typical and TELS instruction for two key science concepts in six courses: middle school 
earth, life, and physical science; high school biology, chemistry, physics (Linn et al., 2006). The 
TELS cohort (N=4520) achieved over a quarter of a standard deviation improvement compared to 
the typical cohort (N=3712) with an effect size of .32 ( p<.001). We used both multiple-choice ques-
tions, which were unable to detect this gain, and constructed response items, that were. We attribute 
these gains to the features of the TELS design, which include: guided inquiry based on interactive 
visualizations, models, and probeware; relevant contexts that interest students; ample time for reflec-
tion; a focus on integrating prior experiences with new observations, student collaboration, compre-
hensive activities, and easy implementation. 

Student learning over time. TELS used pretest, posttest, and annual assessments to determine re-
tention from TELS modules. High school students learned about unseen processes involving mole-
cules (chemical reactions), electrons (electrostatics), population-based genetics (evolution), and 

chromosomes (meiosis). TELS 
followed these students (N=764) 
taught by 11 teachers from 6 
schools in 3 states as they 
completed pretests and posttests 
immediately before and after the 
module enactment, and delayed 
posttests at the end of the school 
year. To track students over these 
three time points, TELS used 
explanations coded with the 
knowledge integration coding 
rubric (Lee et al. 2008). As shown 
at left, ANOVA results indicate 
that mean knowledge integration 
values significantly increased across 

tests for four different TELS curriculum units, F(2, 1867) = 73.75, p <.001. Considering that typical 
lab-based studies show a consistent drop at the delayed posttests, our results indicate that instruction 
with TELS modules can be highly effective and appear to foster post-instruction learning.  

Combining assessment and instruction. The knowledge integration framework is ideal for com-
bining instruction and assessment since many of the design principles call for students to provide 
evidence of their progress. CLEAR will design assessments that follow these principles, thereby cre-
ating activities that serve as both instruction and assessment. As our ability to track and monitor 
student progress during instruction increases we can establish student accomplishments more and 
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more on evidence directly generated during instruction rather than on one-shot state and national 
tests that are often poorly aligned with either standards or instruction (Shepard, 1989, 2000).  

Cyberinfrastructure. Over more than a decade of research (Buckley et al., 2004; Horwitz & 
Christie, 1999; Linn, Clark, & Slotta, 2003; Slotta, 2004), we have developed a unique technology 
infrastructure that is uniquely able to support the cumulative learning strategies, embedded assess-
ments, and professional development proposed. Students learn through guided inquiry that is en-
hanced through rich computational resources.  

TELS has created a new technology infrastructure for developing and delivering computer-based 
curricula that can include sophisticated applications such as probeware and computational models. 
This technology is called SAIL: the Scalable Architecture for Interactive Learning and represents 
refinements of WISE (Linn & Slotta, 2000; Slotta, 2004) and Pedagogica (Horwitz & Tinker, 2001). 
SAIL has enabled the development of new software that responds dynamically to student actions 
and provides formative feedback to teachers so they can adjust instruction as needed. This same 
technology enables researchers to collect detailed data from remote sites by logging and analyzing 
student actions and responses, and will support the dynamic assessment and feedback mechanisms 
required by CLEAR. A growing collection of applications can now be integrated in SAIL including 
the following that will be used in CLEAR: the Molecular Workbench, which uses molecular dynam-
ics to generate exciting atomic-scale models and probeware software for real-time data acquisition 
and analysis.  

RESEARCH AND DEVELOPMENT METHODOLOGY: ASSESSMENT DESIGN 

CLEAR will design pre-
tests, posttests, annual, 
and embedded assess-
ments. The scaffolded 
knowledge integration 
framework and the cu-
mulative learning strate-
gies will guide the design 
of assessments and in-
struction. We will track 
progress in knowledge 
integration as well as tra-
jectories of student en-
ergy conceptions and 
misconceptions. 

The CLEAR technolo-
gies will allow us to pro-
vide multiple embedded 
assessment opportunities 
throughout each curricu-
lum unit (Ball & Forzani, 
in preparation). All of the 
pretests, posttests, and 
embedded assessments 
will require students to 

Figure. Rubric Comparison 

A typical TIMSS explanation item (7th and 8th grade). TELS expanded the di-
chotomous scoring (left) of this item into five levels (right) increasing its sensi-
tivity to knowledge integration (Linn et al., 2006). 

Question: Electrical energy is used to power a lamp. Is the amount of light energy pro-
duced more than, less than, or the same as the amount of electrical energy used? 
The amount of light energy produced is  
(check one) __ more than     __ less than     __ the same as the amount of electrical en-
ergy used. 
Give a reason to support your answer. 
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generate responses or artifacts as part of curriculum activities. Students will summarize their interac-
tions with Molecular Workbench and probeware, create conceptual, quantitative, or qualitative rep-
resentations of energy concepts with MySystem, write explanations of energy phenomena in embed-
ded notes, as well as articulate energy stories and critique ideas of others in the CLEAR energy blog. 
Students will create portfolios of their work using the CLEAR Portal. The SAIL environment will 
log and evaluate student data so it can be used by teachers to improve instruction and by students to 
monitor their progress (e.g., Chiu & Linn, 2008; McElhaney & Linn, 2008). On the annual assess-
ments, CLEAR will compare these new item formats to the knowledge integration items used in 
past research, and to the TIMSS items identified in the pilot study. 

Pilot Study–TIMMS items. We analyzed 18 TIMSS items (TIMSS, 1995, 1999, 2003) measuring 
energy sources, transfer, transformation, and conservation that were administered in 6th to 8th grades 
(N=3500). We rescored the explanation items using the knowledge integration rubric and are using 
the Rasch partial credit model to obtain item parameters. We will use these TIMSS items along with 
project-designed items on annual assessments to calibrate new measures. 

Knowledge Integration Rubric. To assess progress in knowledge integration, TELS researchers 
designed tasks that ask students to develop an explanation about a complex scientific phenomenon. 
The knowledge integration scoring rubric assesses the ideas students generate, whether ideas are 
normative and relevant, the existence and quality of links between ideas, and the number of elabo-
rated, meaningful links. We compared the validity and sensitivity of multiple-choice and knowledge 
integration explanation items (see Figure Rubric Comparison). We used a Rasch Partial Credit Model 
(Liu et al., in press) to show that, as compared to multiple-choice items, explanation items exhibited 
better psychometric properties in terms of discrimination index, test-item consistency, and person 
separation reliability and, as a result, were more sensitive to the instruction aimed at increasing 
knowledge integration (Lee et al., 2008). 

Scoring and interpreting student work. CLEAR will research three approaches to scoring on or-
der to to assess sensitivity to cumulative learning, usefulness for monitoring progress, and consis-
tency with state tests. We will apply the knowledge integration rubric to explanation, argumentation, 
concept mapping, and artifact items based on research by several TELS fellows (Chiu & Linn, 2008; 
McElhaney, 2008; Schwendimann, 2007; Zhang, 2008). We will capture trajectories in the repertoire 
of ideas that students articulate using the methods of Minstrell (diSessa & Minstrell, 1998; Hunt & 
Minstrell, 1994) and TELS collaborator Clark (Clark, 2006; Clark & Linn, 2003). We will continue to 
use rubrics and items from state and national tests (Lee et al., 2008). We will study how teachers and 
schools use CLEAR assessments for grading and other consequential decision and test the psycho-
metric properties of CLEAR assessments and make revisions to increase validity and reliability. 

ENERGY CURRICULUM DESIGN 

Student ideas about energy. Learners hold disjointed, incoherent ideas about energy that are 
grounded in their observations of the natural world. Surveys of student (Duit, 1999; Driver et al., 
1996; Galley, 2004; Goldring & Ogborn, 1994; Linjse, 1990; Liu & Keough, 2005) and teacher ideas 
(Kruger, Palacio & Summers, 1992; Trumper, 1997), instructional studies (White & Frederiksen, 
2000), and a few longitudinal studies (Clark & Linn, 2003; Lewis, 1996; Linn & Hsi, 2000) all reveal 
that people develop a repertoire of contradictory, idiosyncratic, and complex ideas about energy. 
Students and their elementary and middle school teachers share similar views of energy. The best-
characterized non-normative ideas about energy that have been reported include vitalism (Barak, 
Gorodetsky, & Chipman, 1997; Trumper, 1993, 1997, 1998), energy-as-substance (Chi, 2005; 
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Wiser & Carey, 1983; Linn & Hsi, 2000), and a source-receiver model (Driver et al, 1996). Other 
common ideas involve conflating similar ideas like energy transformation, transmission, and storage.  

Curriculum strategies. To help students to develop ideas and build a coherent understanding that 
grows across grades, we will: 1) adopt a clear operational definition of energy, 2) focus on energy 
conversions, and 3) incorporate activity patterns that result in knowledge integration.   

Energy definition. We will introduce energy as “a property that can be used to heat water.” This 
sounds rather informal, but is, in fact, quite rigorous and avoids the problems of the typical defini-
tion—the ability to do work—which is accessible only to students who understand the scientific 
definition of work: an advanced concept based on the summation or integral of force over distance. 
By starting with such an inaccessible definition, the typical middle school treatment of energy sows 
confusion from the start.  

Using the heating ability of energy is accurate because it is always possible to turn 100% of any form 
of energy into heat and use that heat to increase the temperature of water. Measuring their heating 
ability allows different forms of energy to be compared. It also provides a concrete, operational 
definitions that will be reinforced by actual experiments for each type of energy. Indeed, the Calorie 
and the British Thermal Unit are based on the energy required to heat water and probably persist 
because of their greater conceptual clarity, as compared to definitions based on work.  

Energy conversions. To develop a solid, integrated understanding of energy, we will consistently 
use a set of four software tools: probeware to enhance lab experiments, molecular dynamics models 
for virtual experiments at the atomic level, MySystem for exploring energy systems, and the Energy 
Blog for reflection and collaboration. This multimodal approach will allow students to generate 
ideas, test them in real and virtual contexts, reflect on them, and communicate them. The following 
proposed topics, explored both with probes and atomic-scale models, are organized according to the 
ability of different forms of energy to heat water.  

• Heating water with sunlight.  
• Heating water with electricity.  

• Heating water conduction from a warm aluminum slab. 
• Cooling water conduction from a cool aluminum slab. 

• Heating the aluminum slab by mechanical motion (friction).  
• Heating the aluminum slab mechanical potential energy.  
• Heating water with chemical energy. 

• Cooling water with ice.  

These experiments establish a way of measuring the amount of energy across its many forms, and of 
focusing on energy conversion. These experiments will naturally raise the question of whether each 
form can be converted to the others. Can sunlight be converted to electricity? Or kinetic energy to 
potential? The CLEAR curriculum will enable students to explore such conversions until they un-
derstand the idea that energy has many forms and can be converted from one form to another. In 
the curriculum, students will experiment with several alternatives, completing CLEAR reflections 
(which will also serve as formative assessments) as they move from experiment to experiment.  

Instructional patterns. Students will follow four instructional patterns that have proven to succeed 
to knowledge integration: 1) eliciting ideas to clarify where students start their learning; 2) adding 
new ideas primarily through inquiry activities such as experimenting; 3) developing criteria for select-
ing among alternatives (criteria could be controlled experiments or coherence among scientific ob-
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servations); and 4) reflection and sorting out of ideas (Linn & Eylon, 2006). Each instructional expe-
rience will feature many combinations of the four processes and relevant embedded assessments.  

Development. A partnership of classroom teachers, technologists, discipline experts, learning scien-
tists, and evaluators will design the CLEAR instructional materials informed by the knowledge inte-
gration framework. The partnership will align activities with state and national standards. We will use 
the American Association for the Advancement of Science Atlas (AAAS, 2007) representation of 
energy ideas for grades 6 to 8 as a basis for the integration of ideas (see Figure AAAS Energy Atlas 
Map). We will also select topics from the California and national standards (NRC, 1996). 

To build a cumulative understanding of energy will connect student experiments on energy conver-
sions to related energy topics such as thermal equilibrium, electrical circuits, and work. This empha-
sis is also central to the California Standards (e.g., 6a, Students know the utility of energy sources is 
determined by factors that are involved in converting these sources to useful forms and the conse-
quences of the conversion process.) By unifying their understanding of energy around conversions, 
students are ready to identify new forms of energy and to understand their connection to more fa-
miliar forms.  

CLEAR TECHNOLOGIES 

SAIL Learning Environment. CLEAR will use SAIL for materials development and deployment. 
SAIL is uniquely able to deliver sophisticated applications that run on student computers, provide 
scaffolding and persistence, and collect data on student performance. CLEAR will add features  

CLEAR Energy Blog. The CLEAR Energy Blog will support collaboration, discussion, argumen-
tation, and creation of community resources. Blogs are rapidly becoming one of the most common 
channels of information on the Web, and CLEAR will capitalize on this channel by challenging stu-
dents to contribute blog entries that are relevant to the current energy topic within their curriculum. 
Students and teachers can contribute blog entries explaining energy situations relating to their own 
lives. They might discuss ideas for perpetual motion machines or explain the energy conversions 
necessary for 
them to ride a 
bicycle to 
school. Both 
students and 
teachers can 
add new 
situations, 
make com-
ments to their 
peers’ entries, 
and rate en-
tries in terms 
of the energy 
claims. Blog 
assignments will be part of the curriculum and assessment. The Energy Blog will expand upon our 
prior efforts in designing the TELS portals and SAIL metadata. We will embrace Web 2 technolo-
gies, creating content and functionality from the participation of many users, and leveraging seman-
tic metadata and social tagging or indexing to make the information accessible to everyone. We seek 
effective integration of social and collaborative technologies to promote cumulative learning.  

Figure. AAAS Energy Atlas MAP. 
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Probeware. The Concord Consortium has a long history of research on educational applications of 
real-time data collection and analysis, now called probeware (see, for example, Metcalf & Tinker, 
2004; Mokros & Tinker, 1987; Tinker, 2000). Their research required the development of flexible 
data collection and real-time graphing software that can work with any vendor’s hardware or with 
parts assembled from parts. This package is open source, has been integrated into SAIL, and will be 
used in CLEAR. The primary sensor used will be a fast-response temperature probe available from 
two vendors and as a kit.  

Molecular Workbench. The Molecular Workbench (MW) is a mature, open source molecular dynam-
ics modeling engine already integrated into the SAIL system. It provides a highly interactive envi-
ronment for student exploration at the atomic scale. It easily handles the evolution in time of sys-
tems of hundreds of Newtonian atoms and molecules acting under the Lennard-Jones and Coulomb 
forces. In CLEAR, MW will be used to provide a conceptual understanding of the atomic basis of 
heat, temperature, electricity, light-matter interactions, chemical energy, and the mechanisms of 
transformations among these. For access and information, see http://mw.concord.org and 
http://molo.concord.org . 

MySystem. MySystem is a new application that will allow students to create or modify a system rep-
resented by objects connected by arrows. This will be introduced as a tool to help students represent 
the  connections among their ideas about energy systems, but it will have a numerical underpinning 
that will be revealed when numbers are needed. Its broad applicability allows MySystem to be used 
consistently across topics and grades, connecting conceptual descriptions of systems with their quali-
tative and quantitative features. The MySystem user sees graphical objects that are connected by ar-
rows. An intuitive and familiar set of drawing tools permits the user to create and edit systems.  

In CLEAR, the graphical objects will represent energy producers, transformers, and sinks. More 
complex objects like a house or a power station can be “opened” to see constituent parts, made 
from objects interconnected by arrows. For instance, a power station might consist of an energy 
source such as oil, converters such as oil-to-heat and heat-to-electricity, and outputs such as electric-
ity, heat, and CO2. Mathematically, an object is a function or a sub-system with inputs and outputs 
and a graphical appearance, possibly animated. Arrows connect the output of one object to the input 
of another object and indicate that the two are equal. Running a MySystem model will calculate a con-
sistent set of inputs and outputs if any exist for the values provided. If values change, MySystem will 
continue to resolve the system over time. To make the mathematics accessible, functions can be 
symbolic, qualitative, and/or textual. They can be as simple as “add one” or “increase” and as so-
phisticated as “integrate over time.” A function can be defined quantitatively as in “when the input 
goes up a little, the output goes down a lot.” In CLEAR most functions will be ratios or linear, cor-
responding to the mathematics they will be learning in these grades.  

The following illustrates how MySystem could support student concept development.  
One cold night Jan left the light on in her closet. Her father berated her the next day about the cost of wasted electricity. 
She objected, saying that the heat from the light saved them as much in heating costs. Her father claimed that light 
bulbs were not intended as heaters and besides, the light could not influence their room heater. Who is right?  

Two teams could use MySystem to model the various energy transformations. One team could model 
the home heating system and the other the light in the closet. The curriculum would supply a variety 
of objects, including light bulb object with electrical power input and both light and heat outputs. It 
would also provide an absorber that converts light energy to heat. Used without numbers, creating 
MySystem models helps organize students’ thinking, scaffolded as needed by the software. By running 
numbers through their systems, they could make quantitative comparisons.  
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Open-ended problems like this generate animated debate because there is no right answer. Many 
assumptions need to be made to answer the question, including the location of the closet and the 
source of energy for heating. Naturally, the learning comes from the debates about the two models 
and the thinking that is generated (Bell & Linn, 2000; Osborne et al., 2004). 

CLEAR Portal. All curriculum and assessment elements will be delivered through the CLEAR Por-
tal. All technology-enhanced materials will collect student inputs and log them within the portal for 
use by the students, teachers and researchers. Building on our own prior systems, we will refine our 
abilities to deliver these data to the appropriate users at the opportune times. One feature of the 
Portal and other CLEAR materials is that of semantic metadata. Whenever a student makes any con-
tribution, certain metadata (e.g., time and date, author name, class and period, curriculum topics and 
keywords) will automatically be added to a hidden file that is attached to that entry. Still other meta-
data will be added by students in the course of the activity (e.g., ratings or social tags or assess-
ments). These metadata can be queried by teachers, or by other technology elements.  

For example, to support students’ reflections following the experiment on mechanical potential en-
ergy, the technology environment can provide students with a new window that includes all items 
that included “mechanical potential energy” from previous blog entries. The curriculum can encour-
age them to reflect on the new ideas that emerged from the experiment. The use of semantic meta-
data will greatly enhance our ability to build connections between curriculum topics and across sci-
ence courses.  

The Portal will draw upon the familiarity of students and teachers with online spaces and their ex-
pectations that such spaces should contribute to all aspects of their lives. The CLEAR Portal will 
provide a safe, personalized, permanent space for each student and teacher. Students will use this 
space for building a portfolio, preparing reports, and creating summaries that they can use in subse-
quent years. Portal documents will include runable MySystem and MW representations, annotated 
snapshots from these and probe software, and blog discussions about ideas of their own or their 
peers from previous years. Students will be able to see all of their own work, as well as selective ac-
cess to that of peers, according to the design of the curriculum. Students will draw on these artifacts 
to revisit ideas, reflect, and monitor their progress.  

Teachers will use the Portal to access succinct summaries of student progress, grade student work, 
and annotate curriculum materials. Teachers will receive well designed reports that include summa-
ries of student data and links to specific student work in real time (i.e., during class). Researchers will 
be able to quickly and accurately query all data within and between any desired groupings of stu-
dents.  

RESEARCH DESIGN 

CLEAR proposes to conduct cohort comparison studies and randomized classroom studies com-
paring alternative strategies for promoting coherence in four participating schools. These quasi-
experimental (cohort comparison) and randomly assigned classroom comparison methods will be 
augmented with student interviews, video case studies, and classroom ethnographies.  

Schools and Teachers. CLEAR is fortunate to have obtained the commitment of four middle 
schools from within the Mt. Diablo Unified School District. One of the largest school districts in 
California, Mt. Diablo serves over 35,000 K-12 students. The student body is diverse, including 30% 
Latino, 8% Asian, and 5% African American students. About 17% of the students are language 
learners. Three of the CLEAR schools enroll about 800 students each with about 18% receiving a 
free or reduced price lunch, and 8% classified as English language learners. The fourth CLEAR 
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school enrolls about 650 students, of which 60% are socio-economically disadvantaged, over 82% 
receive free or reduced price lunches, and 35% are English language learners. (See School Support 
Letters for additional details). Altogether the four schools have a total of about 1000 students and 8 
teachers at each grade level. Thus, each of the cohorts will include 1000 students followed for either 
2 or 3 years, depending on the study. One teacher-designer at each grade level will be selected from 
each school to participate in the design team each summer. Teacher-designers will pilot test the ma-

terials within their own classroom and mentor other teachers within their school. We will follow 
four cohorts for up to three years (see CLEAR Timeline) : 

• Control Cohort. Students in all classes studying the typical curriculum. Cohort starts in 6th 
grade in year 1, followed for 3 years.  

• Pilot Cohort. Students in classes of teacher-designers who helped design the first version of 
assessments and materials. Cohort starts in 6th grade in year 2, followed for 3 years. 

• Experimental Cohort. Students in all classes studying randomly assigned alternative as-
sessments and materials. Experienced teachers will mentor new teachers. Cohort starts in 6th 
grade in year 3, followed for 3 years.  

• CLEAR Curriculum Cohort. Students in all classes studying the successful assessments 
and materials from experiments. Cohort starts in 6th grade in year 4, followed for 2 years. 

Figure. CLEAR Timeline 

Year Assessment Technology 
Summer Design 

Workshop 
Cohort Activities 

1 
[Starting 
September 

2008] 

Design and pilot test cumu-
lative learning items for 
annual tests for 6th-8th 
grade. 

Establish ver-
sion 1.0 of 
CLEAR 
technologies. 

6th grade teacher-
designers and team 
draft the 6th grade 
materials.  

Control: Administer annual 
tests to all 6th grade students in 
participating schools. 

2 

[Starting 
September 

2009] 

Design embedded and unit 
assessments. Calibrate pilot 
data using IRT models. 
Refine items based on psy-
chometric properties. 
Equate tests. 

Refine CLEAR 
technologies 
based on 6th 
grade trials. Re-
fine SAIL to 
support design 
team. 

7th grade teacher-
designers from 
schools join team to 
draft 7th grade ma-
terials. Team refines 
the 6th grade mate-
rials. 

Control: Administer annual 
tests in 7th grade. 

Pilot: Teacher-designers test 
6th grade materials in their 
classes. 

3 

[ Starting 
September 

2010] 

Refine embedded, unit, and 
annual assessments. Estab-
lish performance trajectory 
for Pilot cohort. Validity 
study using NAEP, TIMSS, 
and CLEAR items. 

Refine CLEAR 
technologies 
based on 7th 
grade trials. Re-
fine SAIL for 
design team. 

Engage 6th and 7th 
grade teachers in 
refining CLEAR 
materials. Mentor 
new 6th grade teach-
ers. 

Control: Administer annual 
tests in 8th grade. 

Pilot: Teacher-designers test 
7th grade materials. 

Experiment and Spontane-
ous: Conduct randomized 
trials of strategies. 

4 

[ Starting 
September 

2011] 

Refine embedded and unit 
assessments. Refine items 
and annual assessments 
using IRT. Establish stu-
dent performance trajectory 
for Experiment cohort. 

Finalize tech-
nologies. Add 
features to SAIL 
based on find-
ings from ran-
domized trials. 

Engage 6th and 7th 
grade teachers in 
refining CLEAR 
materials. Mentor 
new 7th grade teach-
ers. 

Pilot: Administer annual tests 
in 8th grade.  

Experiment and Spontane-
ous: Conduct randomized 
trials of strategies. 

CLEAR Curriculum: Enact 
final version in all 6th grades. 

5 

[ Starting 
September 

2012] 

Refine items using IRT. 
Create item bank. Establish 
student performance trajec-
tory for CLEAR Curricu-
lum cohort. 

Maintain 
CLEAR tech-
nologies. Add 
SAIL features 
for logging.  

Engage 6th and 7th 
grade teachers in 
finalizing CLEAR 
materials and as-
sessments. 

Experiment: Administer an-
nual tests in 8th grade.  

CLEAR Curriculum: Enact 
final version in 7th grade in all 
participating schools. 
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We will conduct additional experimental comparisons by working with teachers who spontaneously 
locate the CLEAR materials and agree to participate in annual assessments. CLEAR materials will be 
open source and available for free on the Internet starting in year 3. Currently about 500 teachers 
spontaneously use the WISE library of projects every month.  

Cohort methods. All four cohorts will complete annual assessments. In addition, the Pilot, Ex-
perimental, and CLEAR Curriculum cohorts will take pretests and posttests and respond to assess-
ments embedded in instructional materials. These cohorts allow us to iteratively refine the materials 
and test alternative approaches while gathering indicators of cumulative learning every year.  

The Pilot Cohort will test the first version of the materials and assessments; we will analyze students’ 
progress in generating explanations, arguments, and artifacts during the academic year. The team will 

refine the piloted materials using evidence from this cohort. The team will use the refined materials 
to design comparison studies of promising strategies for promoting coherence.  

The Experimental Cohort classes will study randomly assigned strategies to promote cumulative 
learning, including alternative forms of feedback, varied formats for explanation items, and alterna-
tive uses of MySystem and the Energy Blog. These studies will typically employ a pretest, followed by 
a single experimental curriculum unit, then a posttest – an approach that has proven successful in 
comparison studied using technology-enhanced materials (Chiu & Linn, 2008; McElhaney & Linn, 
2008; Tate, 2008; Zhang & Linn, 2008).  

For the CLEAR Curriculum Cohort we will combine the most successful instructional strategies 
based on the comparison studies from the Experimental Cohort. This cohort will include all teach-
ers. The CLEAR Curriculum Cohort is the best comparison to the Control Cohort.  

These three cycles of curriculum development, testing, and item revision will allow us to eliminate 
unsuccessful approaches and strengthen fruitful ones. Using evidence from these studies we will cre-
ate design principles describing ways to design assessments and instruction to promote cumulative 
learning. 

Measurement and evaluation techniques. Advanced measurement and evaluation techniques in-
cluding item response models, multi-level models, and test equating techniques will allow us to in-
terpret the results of these investigations. We will use item response models to establish reliable es-
timates of student cumulative science learning and characterize stable performance trajectories. 
Multi-level models will help us understand the role of both student and teacher level characteristics 
when comparing cohorts. By combining these methods with interviews, video case studies, and eth-
nographies we will be able to identify main impacts as well as nuanced effects. 

We will conduct three types of analyses: Cohort trajectory studies, Within grade comparison studies, 
and Cohort Comparison Studies. Cohort trajectory studies track student trajectories in understanding 
energy from 6th grade to 8th grade. We will establish a performance trajectory for students in the Pi-
lot, Experimental, and CLEAR Curriculum cohorts. We will take advantage of the multiple assess-
ment opportunities to understand student strengths and weaknesses at each testing point. We will 
also explore how the cumulative learning trajectories vary among the three cohorts as they receive 
incrementally improved energy instruction. The multiple evaluation opportunities improve the accu-
racy of estimates of student performance before, during, and after instruction. In addition, we will 
study how information gathered at multiple instruction points helps teachers identify strengths and 
weaknesses in student understanding. 

Within grade comparisons will compare alternative instructional strategies randomly assigned to classes 
within the Experimental cohort and determine which succeed. We will analyze the cumulative learn-
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ing of the 6th graders and 7th graders separately. We will also be able to compare classes in the Con-
trol, Pilot, Experimental, and CLEAR Curriculum cohorts.  

The Cohort comparison studies allow us to compare the Control cohort to the Pilot cohort and the 
CLEAR Curriculum cohort to assess impact of instruction on cumulative understanding. With these 
3 cohorts we can investigate how implementation of the CLEAR materials, modification of the ma-
terials, or variation in teacher practice affects the way students make progress in understanding sci-
entific phenomena. 

We will investigate the impact of various implementation variables on student cumulative learning 
using a multi-level model. For example, participating teachers are likely to become more adept as 
they teach more energy units. They may identify concepts students find difficult and come up with 
teaching strategies. To tease out the impact of the various factors on student success, this hierarchi-
cal model will use individual students as the basic unit of analysis. The second level analyses include 
the cohort variables. Performance of the control cohort and the pilot and CLEAR Curriculum co-
hort will be evaluated. The third level analyses add teacher characteristics such as demographic vari-
ables, years of teaching experience, and most importantly how they implement the CLEAR energy 
activities. This three-level model has the potential of clarifying how students become cumulative 
learners. 

Item bank and design principles. After analyzing the data collected from all sources, we will es-
tablish a comprehensive and validated item bank for the use of the science assessment community. 
By the end of year 5, we will have developed, tested, and analyzed a large number of cumulative 
learning items. Item response modeling techniques will be used to calibrate all of the items in terms 
of item difficulty and discrimination power. We will also compare items that follow our assessment 
design principles with those designed by large scale standardized assessments as TIMSS and NAEP. 
All of the items with complete psychometric properties will be made available to interested users 
including assessment professionals, administrators, and teachers. We will also identify principles as-
sociated with successful items to add to the design principles database.  

E X P E R T I S E ,  E V A L U A T I O N ,  A N D  D I S S E M I N A T I O N  

Project Expertise and Management. The CLEAR leaders will balance flexibility and accountabil-
ity. At the start of the project a detailed, task-based work plan will be developed that reflects the 
timeline sketched above. The project leaders will monitor project progress through biweekly telecon-
ferences and quarterly meetings (in conjunction with professional activities including AERA, AAAS, 
the Summer Design Workshop, and PI meetings). The PIs will tap the expertise in the project advi-
sory board regularly and meet with them at the Summer Institute. CLEAR will communicate results 
regularly and cooperate fully with any NSF program reviews and requests for project data. Impor-
tant parts of the project will be accomplished by sub-awardees who have successfully collaborated in 
the past. CLEAR will use the Berkeley monitoring process requiring annual negotiation of a State-
ment of Work. Each leader will have a primary responsibility and will work closely with the other 
leaders: 

Marcia Linn, the Principal Investigator, has overall responsibility for the project and will lead the 
research activities, drawing on her background in learning sciences, technology, and psycho-
metrics. 

Robert Tinker, President of the Concord Consortium, will lead the technology activities. Tinker 
has produced powerful simulations and visualizations for energy topics across the curriculum 
(Pallant & Tinker, 2004; Tinker, 1996).  
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Jim Slotta, at the University of Toronto will lead the curriculum design activities. Slotta has a 
background in Engineering, completed his doctorate in Cognitive Psychology under Mich-
elene Chi (Slotta, 1997) studying the implications of students’ ontological understanding of 
energy, and leads the learning environment design team. 

Kathy Beneman will coordinate with the schools and lead the professional development activi-
ties. Beneman is the TELS manager and has experience in classroom teaching and technology 
leadership.  

Hee Sun Lee, Berkeley and Tufts, will lead the assessment design and rubric construction activi-
ties. Lee has extensive assessment experience (Linn et al., 2006; Songer et al., 2002). 

Ou Lydia Liu, ETS, will lead the quantitative analysis activities, review all research plans, and co-
ordinate the external evaluation. Liu studied with Mark Wilson and collaborated on design and 
analysis of the TELS assessments (Liu, Lee, Hofstetter, & Linn, in press).  

Advisory Board. CLEAR will be ably advised by leaders in the field who have agreed to both meet 
formally with the project annually and evaluate the project in their areas of expertise on a regular 
basis. Advisors and areas of expertise include: Jane Bowyer, Mills College (educational leadership 
and professional development); Derek Briggs, University of Colorado, Boulder (assessment, HLM, 
IRT, ); Michelene Chi, University of Pittsburgh (cognitive psychology); Doug Clark, Arizona State 
University (biology, conceptual change, language learners); Yael Kali, Technion, Israel Institute of 
Technology (earth science and design principles); Rich Lehrer, Peabody College, Vanderbilt Univer-
sity (modeling and student learning); Min Li, University of Washington, Seattle (assessment, applied 
measurement); Senta Raizen, WestEd (physical science and assessment); Nancy Songer, University 
of Michigan (life science, inquiry learning, learning technologies); Elisa Stone, Berkeley (CA) High 
School (life science, biology teaching). CLEAR will benefit from disciplinary expertise in physical 
and earth science (Horwitz, Kali, Raizen, Tinker), life science (Clark, Slotta, Songer, Stone), profes-
sional development (Bowyer, Clark, Lehrer, Songer, Stone), and assessment (Briggs, Lee, Linn, Li, 
Liu, Raizen). 

Project Evaluation. CLEAR will take advantage of the expertise of the advisory board to carry out 
the external evaluation of the project. The external evaluation will be coordinated for the advisory 
board by Paul Holland of the Paul Holland Consulting Corporation. Holland holds the Frederic M. 
Lord Chair in Measurement and Statistics (retired) in the Research & Development Division at the 
Educational Testing Service in Princeton, NJ. The board will evaluate the project based on the re-
search questions and the detailed work plan. Lydia Liu, ETS, will coordinate the data collection plan, 
Holland will review the plan, and CLEAR will prepare the information. The board will meet in 
closed session, develop recommendations, and report to the project as well as NSF.  

Synthesis and Dissemination. To synthesize our findings for future designers we will identify evi-
dence-based design principles for instruction and assessment and to add to the design principles da-
tabase (Kali, 2006). We will develop an item bank of assessments and tag them with information 
about the principles they illustrate.  

CLEAR will use a website, articles, presentations, congressional visits, and workshops to disseminate 
progress to multiple audiences, including: researchers, curriculum designers, professional developers, 
precollege teachers, principals, industry leaders, and policy makers. The website will feature free cur-
riculum materials, policy briefs, links to papers and presentations, design principles, design patterns, 
and opportunities to participate (see http://WISE.berkeley.edu for past practices). CLEAR assess-
ment items, curriculum materials, and technologies will be open source, available free on our web-
site, and widely publicized at meetings of elementary and middle school science teachers. 
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Lee, H.S., Liu, O. L., & Linn, M.C. (under review). Construct validity of inquiry 
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Liu, O. L., Wilson, M., & Paek, I. (in press, 2008). A multidimensional Rasch analysis of 
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Princeton: NJ.  
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mathematics assessments: PISA trend 2000 & 2003. Applied Measurement in Education.  
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