Java ™ NEeTwork LAUNcHING ProTocoL & AP
SeeciFicaTioN (JSR-56)

Verson1.0.1

YN

Java Software

A Division of Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, California 94303

415 960-1300 fax 415 969-9131

May 21, 2001

René W. Schmidt

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 1

Java(TM) Network Launching Protocol (JNLP) Specification (" Specification")
Version: 1.0.1

Status: FCS

Release: May 21, 2001

Copyright 2001 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303, U.S.A.
All rights reserved.

NOTICE

The Specification is protected by copyright and the information described therein may be protected by one or more U.S. patents, foreign
patents, or pending applications. Except as provided under the following license, no part of the Specification may be reproduced in any
form by any means without the prior written authorization of Sun Microsystems, Inc. ("Sun") and itslicensors, if any. Any use of the
Specification and the information described therein will be governed by the terms and conditions of this license and the Export Control and
General Termsas st forth in Sun'swebsite Legal Terms. By viewing, downloading or otherwise copying the Specification, you agree that
you have read, understood, and will comply with all of the terms and conditions set forth herein.

Sun hereby grantsyou a fully-paid, non-exclusive, non-transferable, worldwide, limited license (without the right to sublicense), under
Sun'sintellectual property rightsthat are essential to practice the Specification, to internally practice the Specification solely for the
purpose of creating a clean room implementation of the Specification that: (i) includes a complete implementation of the currert version of
the Specification, without subsetting or supersetting; (i) implementsall of the interfaces and functionality of the Specification, as

defined by Sun, without subsetting or supersetting; (iii) includes a complete implementation of any optional components (as defined by Sun
in the Specification) which you choose to implement, without subsetting or supersetting; (iv) implementsall of the interfaces and
functionality of such optional components, without subsetting or supersetting; (v) does not add any additional packages, classes or
interfacesto the "java.*" or "javax.*" packages or subpackages (or other packages defined by Sun); (vi) satisfiesall testing requirements
available from Sun relating to the most recently published version of the Specification six (6) months prior to any release of the clean room
implementation or upgrade thereto; (vii) does not derive from any Sun source code or binary code materials; and (viii) does not include any
Sun source code or binary code materialswithout an appropriate and separate license from Sun. The Specification contains the proprietary
information of Sun and may only be used in accordance with the license terms set forth herein. Thislicense will terminate immediately
without notice from Sun if you fail to comply with any provision of thislicense. Upon termination or expiration of thislicense, you must
cease use of or destroy the Specification.

TRADEMARKS

Noright, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun'slicensorsis granted hereunder. Sun, Sun
Microsystems, the Sun logo, Java, and the Java Coffee Cup Logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the
U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION ISPROVIDED "ASIS'. SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESSFOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR
ANY PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTSWILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETSOR OTHER RIGHTS. Thisdocument does not represent any
commitment to release or implement any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE CHANGESWILL BE INCORPORATED INTO NEW
VERSIONS OF THE SPECIFICATION, IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGESTO THE
PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changesin
the Specification will be governed by the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITSLICENSORSBE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITSOR DATA, OR FOR SPECIAL, INDIRECT,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY
OF LIABILITY, ARISING OUT OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE
SPECIFICATION, EVEN IF SUN AND/OR ITSLICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Y ou will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting from: (i) your use of the
Specification; (ii) the use or distribution of your Java application, applet and/or clean room implementation; and/or (iii) any claimsthat
later versions or releases of any Specification furnished to you are incompatible with the Specification provided to you under thislicense.
RESTRICTED RIGHTSLEGEND

U.S. Government: |f this Specification isbeing acquired by or on behalf of the U.S. Government or by a U.S. Government prime
contractor or subcontractor (at any tier), then the Government’s rightsin the Software and accompanying documentation shall be only as set
forth in thislicense; thisisin accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions)
and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

Y ou may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with your use of the Specification
("Feedback™). To the extent that you provide Sun with any Feedback, you hereby: (i) agree that such Feedback is provided on a non-
proprietary and non-confidential basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the
right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any
purpose related to the Specification and future versions, implementations, and test suites thereof.

(LFI#86972/Form 1D#011801)

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 2

TaBLE oF CONTENTS

L0 1 = o TR PP PT TR UPPPPN 5
Who Should Read This SPECITICALION.cieiiiiiiiiiii it e 5
AP REFEIENCE. ...ttt ettt ettt st n e bt bt en b b e naeennee s 5
Other Java SPECITICALIONSeeeieeieeiee ettt ettt b e e bbb e e b et nesane e 5
Other IMPOrtant REFEIENCES.........ei ittt b e bt e r e e eneeane e 5
Providing FEEODACK.coittiiiiiiteis et b e bt nn e e 6
ACKNOWI BAGMENTS......ceeee ettt ettt b e bt st et e e sbe e b e e sbeenbe s beenaeenneens 6
REVISION HISIONY ...ttt ettt et e bbbt et e e be e s e e eaneenneeanas 7

L OVEIVIEIN. ...ttt ettt ettt ettt bbbt h ekt e e R e R e R et R e £ R Rt R R e R Rt R Rt R Rt e ae e e ebe e Re e nne e e nneennee s 8
Web-centric APPIICation IMOOEL..........oouiiieiiieee et ettt b e beae e 8
L Y IE Lo g 1] oo IO TSP PP UR TP 9
APPLiCALTION ENVIFONMMENT.......oiitiiiii ittt et seeesae e aeess e e ssn e e nesaneseeenreenes 11
AN EXBIMPI ...ttt e et b e bt e bt bt e bt e R e e e eR e e R e e b e e e abe e nRe e s eheesRenne e enreenreene 11
Comparing JNLP with Other TECNNOIOGIES..........cciiiitiieiieiieiesi e e e 1°

A = 10011 < o TSP OUR PP 13

BN ettt ettt ettt b e E e e bt bt e be e bt ne e b e e heenn e e nnee s 14
OVEIVIEI. ..ttt etttk ettt b et a ekt ek e e e 4Rt 4 e e £ 4o e £ e e e £ e Rt 44 xR e oAbt ea bt e bt 4o a ke e ke e bt e ne s enneenrennnennnas 14
MIME Type and Default Fil@ EXTENSION.cc.viiiiiiie ettt 15
Parsing @ JNLP DESCIIPLION.cc.veeteeetietietie ettt ettt ettt sttt e b sbeesbeesbe e sbeesbeesnee e sneneenneens 15
REFEreNnCeS t0 EXLENAl FESOUICES......c.uvietee ettt ettt ettt ettt e bttt sbe e sbe e sae e e sbeesas e san e e nnee s 15
DesCriPtOr INFOMMIBEION.eee ittt et sb b e b sb e e sbe e sbe e seeesbeeree e eneennne s 16
APPIiCALION DESCITIEONS. ... euveeutteeteesteert e ste e st e et e e st e e st e e st e esbeesbee st beesbeesbee st beesbeesbeesebeesbeesbeesbeenreenneenes 18
EXEENSION DESCIIPIONS. ...t iete ettt ettt ettt et b et e e bt et e e e sbeesb e e sbeesbeesn e e nnebeenneennnens 20

4 APPITCALION RESDUICES........teeteeeteeite e stee sttt ettt ettt st as e sa et s bt £ e bt e bt et e bt e bt e e bt eneeenre e neennas 22
OVEIVIBW. ..ttt etttk ettt e etttk ek ekt h e ke 4 A e £ e R e £ e e b £ e et 442 R oAbt ea bt e bt 42kt et e e bt e ne e enneenreennennnas 22
SEING SYSIEM PrOPEITIES. ..ottt bbb b et e beere s eane s 22
SPECITYING COUE RESOUICES........eieiiiiiieiit ettt ettt ettt e bt b e b e e s bt e be e saeenae e s saesnneennas 23
Parts and Lazy DOWNIOAOS..........coouiiiieiiieieeti ettt ettt sttt sbe e e e saeseenane s 24
PACKAgE EIBIMENT......cei ettt ettt sb e b e b e sh et sbe e b e bt e eb e e e neennne s 26
Java RUNEIME ENVIFONMIENT.eiiie ettt b e nb e sb e 26
EXEENSION RESDUICES. ... ettt ettt ettt ettt et e e bt e et e bt e b e e abee e abeesbeenbeeanbebeenneennne s 29

5 Launching and Application ENVIFONMENT...........cciiiiiiiiiiiieiees e e see s 31
LBUNCN SEOUENCE. ...ttt ettt ettt ettt s ettt eh et ae e et eat et e et e e bt et e e eaneenbe e ebeennneennnens 31
LAUNCNING DELAIIS.......eeueteeteeie ettt ettt ettt bbb et s et sbe e sae e e et es b e e nneennee s 32
APPLICALTION ENVIFONMMENT......coiitiiiii ittt ettt et sae e saeess e e sinessnesaneseeenreene 33
SIGNEA APPIICAITONS. ...ttt ettt bbbt bbbt e et eane e 33
UNErUSEE ENVITONIMENT. ...ttt et sb e sb e b b et sb e e sbe e sbe e sbe e nbe e sanesaen e nnee s 34
TrUSIEA ENVITONIMENTS. ..ottt ettt b e bt et ettt e b e et e b ene e enne e 36
Execution Environment for Component EXIENSIONS.........coiieiiiaieriiinie ettt 37

6 Downloading and Caching Of RESOUICES........c..eeiiiiitiieiie ettt ettt eenee s 38
HT TP FOMMEL. ... ettt e st e s n e re e st e e saneesree s 38
BasiC DOWNIOAO ProtOCOL...........ciueiiiiiiiiiiee sttt b et 40
Version-based DOwnload ProtOCOL...........couii it 40
ExXtension DOWNIOad ProtOCOL........ccueiiiiiiieiieriies ettt ettt 41
CaCNE MANAGEIMENT. ...ttt ettt bttt b e et e e bt e bt e bt eesbeesbeenbeeennesaneennas 43
Downloading and Caching of Application DESCIIPLOrSciueeeiieriieiiieriee ettt 44

T INLP AP e e ettt bbbt h e h R et R bR e e et e e e bbb e ehe e bt naeennee s 45
THE BASICSEIVICE SEIVICE......eei ittt ettt sttt ettt s ane st snneeanas 45
The DOWNIOAOSENVICE SEIVICE......ecieiiee ettt et ettt et ettt sbe et e et et e ene e 46
THe FiIlEOPENSEIVICE SEIVICE.....cctiiii ettt ettt ettt ettt ettt e b e sbe e s be et be e s aeane e 47
THE FilESaVESEIVICE SEIVICE.... e iiteetteetee ettt ettt sttt ettt b e e sb e s be et be e s enne e 47

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 3

TE PriNESEIVICE SEIVICE ...ttt e e e e e e e e e e e e e e e aabaae e e eeeeesesasesees bbbbees arnennen 48
THE PEr S SLENCESEN VICE SEIVICE. ...ttt e eeee e e ettt ettt ettt e e e e eeeeeeeeeeteeeeeeses bbbbbbbbbbe s srssnnenen 48
The EXtENSIONINSLA 6 SENVICE SEIVICE......uueet ettt e s e e e e e s eeees 50
B FULUINE DT ECIIONS. ...ttt e e e e e e e e e e e e e et et e eeeeeaaaaaaaaaaa e esssessssssaasaaasassssssasassasessssnssnnenen 52
A Version IDSaNd VErSION SIHNGS.......eeiueeiiieiieitiie ettt et saeese e nessnesane s sreeane e 53
B JARD T FFOMMIAL. ...ttt e e e e e e e e e e e e e e e e aee et e et e e eeeeeseeeeeeeesbbaaaan s ssssssasssssaassaaaaees 55
C INLP File Document TYPe DEfiNITION.oiuiiiiiiiiiie ettt 58
D Application Programming INtEITACE..........oiieiiieie ettt ettt e b e e eree e 69

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 4

0 PreracE

This document, the Java™ Network Launching Protocol and API Specification, v1.0.1, is also known as
the JNLP Specification. In addition to this specification, the Java Network Launching APl has Javadoc
documentation (referred to as the JNLP API Reference, v1.0) and a reference implementation for public
download at the following location:

http://java. sun. con products/javawebstart/

The reference implementation provides a behavioral benchmark. In the case of a discrepancy, the order of
resolution is this specification, then the JNLP APl Reference, v1.0, and finally the reference
implementation.

0.1 WHo SHouLp ReaDp THis SpeciFicaTiON

This document is intended for consumption by:
« Software vendors that want to provide an application or utility that conforms with this specification.

« Web Authoring Tool developers and Application Tool developers that want to provide tool support
that conforms to this specification.

« Sophisticated Web authors and Web site administrators who want to understand the underlying
mechanisms of the Java Network Launching technology.

Please note that this specification is not a User's Guide and is not intended to be used as such.

0.2 API| RerFerence

The JNLP API Reference, v1.0, provides the complete description of all the interfaces, classes, exceptions,
and methods that compose the JNLP API. Simplified method signatures are provided throughout this
specification. Please refer to the API Reference for the complete method signatures.

0.3 OTHER JAVA SPECIFICATIONS

The following Java API Specifications are referenced throughout this specification:

« Java 2 Platform Standard Edition, v1.2 and v1.3 (J2SE). The specifications can be found at:
http://java. sun.conl j 2se/

« Java 2 Platform Enterprise Edition, v1.2 (J2EE). The specification can be found at:
http://java. sun.conl j 2ee/

0.4 OTHER IMPORTANT REFERENCES

The following Internet Specifications provide relevant information to the development and
implementation of the JNLP Specification and tools that support the specification.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 5

« RFC 1630 Uniform Resource Identifiers (URI)

« RFC 1738 Uniform Resource Locators (URL)

+ RFC 1808 Relative Uniform Resource Locators

» RFC 1945 Hypertext Transfer Protocol (HTTP/1.0)

« RFC 2045 MIME Part One: Format of Internet Message Bodies

« RFC 2046 MIME Part Two: Media Types

« RFC 2047 MIME Part Three: Message Header Extensions for non-ASCI|I text
« RFC 2048 MIME Part Four: Registration Procedures

« RFC 2049 MIME Part Five: Conformance Criteria and Examples

» RFC 2616 Hypertext Transfer Protocol (HTTP/1.1)

Y ou can locate the online versions of any of these RFCs at:

http://ww. rfc-editor. org/

The World Wide Web Consortium (ht t p: / / www. w3c. or g) isadefinitive source of HTTP related
information that affects this specification and itsimplementations.

The Extensible Markup Language (XML) is utilized by the INLP Descriptor described in this
specification. More information about XML can be found at the following websites:

http://ww. w3. or g/

http://ww. xm . org/

0.5 ProvipinGg FEEDBACK

The success of the Java Community Process depends on your participation in the community. We welcome
any and all feedback about this specification. Please e-mail your comments to:

jnlp-comments@eng.sun.com

Please note that due to the volume of feedback that we receive, you will not normally receive areply.
However, each and every comment isread, evaluated, and archived by the specification team.

0.6 ACKNOWLEDGMENTS

The success of the Java Platform depends on the process used to define and refineit. This open process
permits the development of high quality specificationsin internet time and involves many individuals and
corporations.

Many people have contributed to this specification and the reference implementation. Thanks to:
« Thefollowing people at Sun Microsystems: Georges Saab, Lars Bak, Tim Lindholm, Tom Ball, Phil

Milne, Brian Beck, Norbert Lindenberg, and Stanley Man-Kit Ho.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 6

« The members of the JCP expert group (in particular Alex Rosen of SilverStream Software) and
participants who reviewed this document.

« The people on the Internet that reviewed the first public draft of this specification.

A special thanks to my friendsin the INLP team at the Java Software Division at Sun Microsystems, Steve
Bohne, Andrey Chernyshev, Andy Herrick, Hans Muller, Kumar Srinivasan, Scott Violet, and Nathan
Wang, who did most of the hard work to get this project started, shaped, and delivered.

0.7 Revision HisToRrY

0.7.1 CHANGES sINCE RELEASE 1.0

Thisisaminor update of the version 1.0 specification. This specification update contains no changes nor
additions to the INLP file or the INLP API. This update addresses several inconsistencies and typosin the
original specification, as well as one Applet compatibility issue. The major changes are described bel ow:

« Update the untrusted environment to include the AWT permission accessEventQueue. Thisisto
comply with the Applet sandbox model.

+ Clarified the use of encoded/unencoded URLsin a JNLPfile.
+ Clarified that the JARDIff index file uses the remove command and not the delete command
+ Fixed minor typos and inconsistencies in the examples.

This revision does not introduce new version numbers for the INLP file nor the INLP API. A JNLP Client
implementing this specification must be able to run a INLP file which requires 1.0, i.e., the spec attribute
in the jnlp element is set to 1.0.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 7

1 OverviEwW

The Java Network Launching Protocol and API (JNLP) is a Web-centric provisioning® protocol and
application environment for Web-deployed Java 2 Technology-based applications. An application
implementing this specification is called a INLP Client.

The main conceptsin this specification are:

« A Web-centric application model with no installation phase, which provides transparent and
incremental updates, as well as incremental downloading of an application. Thisissimilar to the
model for HTML pages and Applets, but with greater control and flexibility.

« A provisioning protocol that describes how to package an application on a Web server, so it can be
delivered across the Web to a set of INLP Clients. The key component in this provisioning protocol is
the INLP file, which describes how to download and launch an application.

« A standard execution environment for the application. The execution environment includes both a safe
environment where access to the local disk and the network is restricted for untrusted applications, and
an unrestricted environment for trusted applications. The restricted environment is similar to the well-
known Applet sandbox, but extended with additional APIs.

The main concepts are introduced in the following sections.

1.1 WeB-centric AppLicaTiON MODEL

A INLP Client isan application or service that can launch applications on a client system from resources
hosted across the network. It is not a general installation protocol for software components. A high-level
view of aJNLP Client isthat it allows an application to be run from a codebase that is accessed over the
Web, rather than from the local file system. It provides afacility similar to what would happen if URLS
were allowed in the JRE’s classpath, e.g., something that looks like this:

java -classpath http://ww. nysite.com app/ MyApp.jar com nysite. app. Main

The above exampleillustrates the basic functionality of a INLP Client. JINLP goes further than this,
however. Firgt, it provides the ability to specify which version of the Java 2 Platform (JRE) that the
application requires. In the above example, this amounts to choosing what j ava command to use. If the
requested JRE version is not available, a JRE can be downloaded and installed automatically’. Second, it
provides the ability to specify native libraries as part of the application. Native libraries are downloaded in
JAR files. Thus, both signing and compression of the libraries are supported. The native libraries are
loaded into the running process using the Syst em | oadLi br ar y method.

All the resources that an INLP Client needs to access in order to launch an application are referenced
with URLSs. Conceptually, all of the application’s resources reside on the Web server. A JINLP Client is
allowed and encouraged to cache resources that are downloaded from the Web. Thiswill improve
consecutive startup times, minimize network traffic, and enable offline operation.

This application model provides the following benefits:

1 Theterm provisioning iscommonly used to denote the distribution of software components, such as an application, from a central
server to a set of client machines. Thisis sometime also referred to as deployment of an application.

2 Theprovisoning protocol defined in this specification also allows a JRE to be packaged on a Web server for automatic installation on
the client machine by a INLP Client.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 8

« Noingallation phase: A INLP Client ssimply needs to download and cache the application’s resources.
The user does not need to be prompted about install directories and the like.

« Transparent update: A INLP Client can check the currently cached resources against the versions
hosted on the Web Server and transparently download newer versions.

« Incremental update: The JNLP Client only needs to download the resources that have been changed
when an application is updated. If only afew of the application’s resources have been modified, this
can significantly reduce the amount of data that needs to be downloaded when upgrading to a new
version of an application. Furthermore, incremental update of individual JAR filesis also supported.

« Incremental download: A JNLP Client does not need to download an entire application beforeit is
launched. For example, for a spreadsheet application the downloading of the graphing module could
be postponed until first use. INLP supports this model by allowing the developer to specify what
resources are needed before an application is launched (eager), and what resources can be downloaded
later (lazy). Furthermore, INLP provides an APl so the devel oper can check if aresourceislocal or not
(e.g., need to be downloaded or not), and to request non-local resources to be downloaded.

« Offline support: A INLP Client can launch an application offlineif a sufficient set of resources are
cached locally. However, most applications deployed using INLP are expected to be Web-centric, i.e,,
they will typically connect back to a Web server or database to retrieve their state. Hence, many
applicationswill only work online. The application developer specifiesif offline operation is
supported, and what resources are needed locally to launch the application offline.

1.2 ProvisioninG

1.2.1INLP FiLe
The core of the INLP technology isthe INLP file. The INLPfileisan XML document.

Maost commonly, a INLP file will describe an application. A INLP file of thiskind is called an application
descriptor. It specifiesthe JAR files the application consists of, the Java 2 platform it requires, optional
packages that it depends on, its name and other display information, its runtime parameters and system
properties, etc. Thereis a one-to-one correspondence between an application descriptor and an
application.

A INLP file does not contain any binary data itself. Instead it contains URLs that point to all binary data,
such asicons (in JPEG or GIF format), and binary code resources, such as Java classes and native libraries
(contained in JAR files). Figure 1 illustrates how an application is described with INLP files. The root
JINLPfile (application descriptor) contains the basic information such as name and vendor, main class,
and so forth. The JAR files that constitute the "classpath” for the application are all referred to with URLS.

A INLP file can aso refer to other INLP files, called extension descriptors. An extension descriptor
typically describes a component that must be used in order to run the application. The resources described
in the extension descriptor become part of the classpath for the application. This allows common
functionality to be factored out and described once. An extension descriptor also provides the ability to run
an installer that can install platform-dependent resources before the application islaunched, e.g., to install
devicedrivers.

JSR-56 - Java™ Network Launching Protocol and APl Specification v1.0.1 9

1L

Jar File
JNLPFile
(application .
iescriptor) Jar File

/.

Jar File
IJNLPFile /
(extension \A

descriptor)
Figure 1: JNLP File and External Resources

The JNLPfileis, in some sense, similar to atraditional executable format. Traditionally, applications are
delivered as binary platform-dependent files. For example, on Windows, an application is delivered as a
My App. exe executable. The executable format is designed so the Windows operating system can load
the application and executeit. It also contains information about external dependencies, such as, e.g.,
MyApp. dl I . Thisformat isfile-centric; all external references are referencesto files on the local file
system. In contrast, a JINLP file does not contain any binary data itself, but instead contains URLS to
where they can be obtained from. The INLP file format is Web-centric; the referencesto external
resources are URLS, instead of file names.

1.2.2 DowNLoADING RESOURCES

The INLP Client can download 3 different kind of resources: JAR files, images, and INLP files. All
resourcesin a JNLP file are uniquely named using either a URL or a URL/version-id pair. A typical
application deployed using INLP will consist of a set of JAR files and a set of images’. JAR files, images,
and INLP files can be downloaded using standard HTTP GET requests. For example:

http://ww. nysite. conl app/ MyApp. j ar

This basic download protocol works from a standard unmodified Web server. This leverages existing Web
server technology, which isimportant to achieve wide-spread use of a new technology on the Internet.

To provide more control and better utilization of bandwidth, a version-based download protocol is aso
supported. The version-based protocol is designed to:

« Allow several versions of an application to co-exist on aserver at agiven time. In particular, this
means that an application that is distributed as several JAR files can be safely upgraded. A INLP
Client that is downloading JAR files right when a Web server is being updated will never download
JAR filesthat are a mix between two application versions.

« Provide aunique URL for an application independent of itsversion. Thisalows a JNLP Client to
automatically detect and flush old versions out of the cache.

« Makeit possible to incrementally update already-downloaded JAR files. This can substantially
minimize the download requirements for upgrading to a new version.

3 Theimagefilesdescribed in the INLPfile are iconsthat can be used by the INLP Client to integrate the application into the desktop
environment. They are not for use by the application itself. All application resources, such asimages, must generally either be included
in one of the JAR files or be explicitly downloaded using, e.g, an HTTP request.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 10

« Allow usersto stick with a given version rather than always getting the latest version from the Web
server. For example, a INLP Client can download an updated version in the background, while the
already-downloaded version is being used.

The version-based protocol requires special support on the Web server. This support can be provided
using servlets, CGl-scripts, or by similar means.

The use of the version-based protocol is specified in the INLP file on a per-resource basis. Depending on
the facilities the Web server offers (and possibly other factors), the application devel oper can choose
whether the version-based protocol should be used or not.

1.3 AppLicAaTION ENVIRONMENT

The application environment defines a common set of services and system settings that an application
launched with a INLP Client can depend on. The core of this environment is the Java 2 Platform Standard
Edition. In addition, this specification defines additional APIs and settings:

« Configured HTTP proxies.
« A secure execution environment that is similar to the well-known Applet sandbox.

« An API to securely and dynamically lookup and access features on the client platform, such as
instructing the default browser to display a URL.

The application environment is defined as a set of required services that must be implemented by all
implementations that conform to this specification, and a set of optional servicesthat are not required to
be implemented. Applications must check for the presence of optional services and handle their absence
sensibly.

1.4 AN ExampLE

A helper application that implements the Java Network Launching protocol and API can be associated
with a Web browser. The helper application gets configured with the proper HTTP proxy settings during
installation, so they can be passed along to a launched application®. Thus, the user does not have to specify
proxy settings for each application separately.

When a user clickson alink pointing to a INLP file, the browser will download the file and invoke the
helper application with the name of the downloaded file as an argument. The helper application (i.e, the
JINLP Client) interprets the JINLP file, which will direct it to download and locally cache the JAR files and
other resources for the particular application. When al required JAR files have been downloaded, the
application is launched.

A sample INLPfile, which isan XML document, is shown here:

4 InSun'sJava?2 SE JREs, proxy settings can be specified using the pr oxyHost and pr oxyPor t system properties.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 11

<?xm version="1.0" encodi ng="UTF-8""?>
<j nl p codebase="http://ww. nysite.con app">
<i nformati on>
<title>Drawi </title>
<vendor >My Wb Conpany</vendor >
<i con href="drawicon.jpg"/>
<of f1ine-al | owed/ >
</information>
<resour ces>
<j 2se version="1.3+"/>
<jar href="draw. jar"/>
</resources>
<appl i cati on-desc mai n-class="com nysite.Draw'/>
</jnlp>

The INLP file describes how to launch the sample application, titled Draw!. In the INLPfile, it is
specified that the Java 2 platform, version 1.3 or higher is required to run this application, along with
some general application information that can be displayed to the user during the download phase.

1.5 Compraring JNLP witH OTHER TECHNOLOGIES

The JINLP technology isrelated to Java Applets. Java Applets are automatically downloaded, cached, and
launched by a Web browser without requiring any user interaction, and Applets are executed in a secure
sandbox environment by default. Applets are a core part of the Java 2 SE. Many of the technol ogies that
are used by INLP are borrowed from the Applet technology, such as the downloading of code and the
secure sandbox.

Applications launched with INLP do not run inside a browser window, but are instead separate
applicationsthat are run on separate Java Virtual Machines (JVMs). Thus, applications launched with
JINLP are typically more like traditional desktop applications that are commonly distributed as shrink-
wrapped software, e.g., on CDs.

JNLPisnot ageneral installer for applications. It is particularly targeted to Web-deployed Java
Technology-based applications, i.e., applications that can be downloaded from the Web and which store
most of their state on the Web.

The JNLP protocol defines how Java Runtime Environments and optional packages can beinstalled
automatically. Thiswill typically require the JREs and optional packages to be bundled in a traditional
installer.

JSR-56 - Java™ Network Launching Protocol and APl Specification v1.0.1 12

2 Terms UseD

Term
JRE

VM
JNLP Client

Application

Extension

Verson-id

Version string

Description
Java 2 Standard Edition Runtime Environment

Java Virtual Machine
A software application or service that implements this specification.

The term application refersto the Java application or Java Applet that is
launched by a INLP Client.

The term extension denotes a JNLP file that encapsul ates a set of code
resources, such as a optional package or a JRE itsalf.

A specification of an exact version, e.g., 1.2. See also Appendix A.

A specification of akey that is used to match the version-id's. For example,
"1.2.2* 1.3.0" isaVersion string that will match the version-id’s 1.2.2-w,
1.2.2.0, 1.3.0, and so forth. See also Appendix A.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1

13

3JNLP FiLe

The core of the INLP technology is the INLP file. The JNLP file describes how to download and launch a
particular application.

The description of the INLP fileis split into functional categories. Thus, each section typically does not
describe all subelements or attributes of a given element. To view the compl ete set of attributes for an
element, the set of subelements, and a brief description of each, see Appendix C, which contains the
formal syntax of the INLP filein the form of an annotated XML DTD.

3.1 OverviEw

_np

4}‘ information ‘ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

4* security ‘ jar ‘ ‘ j2se ‘ ;
| »] resources | nativelib | extension | |
i ‘ property ‘ ‘ package ‘ i

L _______

application-desc ‘

—P‘ argument ‘

‘ applet-desc ‘

4 param ‘

component-desc ‘

‘ installer-desc ‘

Figure 2: Overview of a JNLP file with the most common elements shown.

Figure 2 shows the outline of a INLP file. It has 5 main sections:

« Thejnlp dement isthe root element. It has a set of attributes that are used to specify information that
is specific to the INLP file itsdlf.

« Theinformation element describes meta-information about the application. That information can, for
example, be shown to the user during download. Thisis explained later in this section.

« Thesecurity element is used to request a trusted application environment. Thisis described in detail
in Section 5.3.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 14

« Theresources e ement specifies all the resources that are part of the application, such as Java class
files, native libraries, and system properties. Section 4 describes thisin detail.

- Thefinal part of aJNLP fileis one of the following four e ements: application-desc, applet-desc,
component-desc, and installer-desc. Only one of the four can be specified in each INLP file. A
JINLPfile with either an application-desc or applet-desc is called an application descriptor, whereas
aJNLP filewith an component-desc or an installer-desc eement is called an extension descriptor.
These elements are described later in this section.

The following JNLP file fragment shows the outline with the actual syntax for a INLP file:

<?xm version="1.0" encodi ng="UTF-8""?>
<jnlp spec="1.0+" codebase="http://ww. nysite.com application/" ...>
<information> ... </information>
<security> ... </security>
<resources> ... </resources>
<application-desc> ... </application-desc>
</jnlp>

The jnlp element contains the spec attribute that specifies the versions of the specification that this INLP
file requires. The value of the attribute is specified as a version string. If none of the versions of the
specification that the INLP Client implements matches the version string, then the launch should be
aborted. If the attribute is not explicitly defined, it must be assumed to be"1.0+", i.e,, the INLP file works
with a INLP Client that supports the 1.0 specification and higher (i.e., it works with all INLP Clients. See
Appendix A).

3.2 MIME Type anp DerauLT FiLe ExTENSION

The default MIME type and extension that should be associated with a INLP file are shown in the
following table:

Default MIME Type Default Extension
application/x-java-jnlp-file .jnlp

3.3 Parsing A JNLP DescripTioN

It is expected that future versions of this specification will introduce new elements and attributes that
would be backwards-compatible with the current DTD. Thus, a INLP Client should not reject a JNLP file
that has extra attributes or elements. This means that the INLP Client's XML parser must not validate the
JINLP XML file against any fixed version of the INLP DTD. However, like any XML parser, if the INLP
XML file contains a DOCTY PE declaration that specifieswhich DTD it uses, the parser may choose to
validate the JNLP file against that specified DTD. If the INLP file does not contain a DOCTY PE
declaration, the parser may not validate the file against any DTD.

3.4 REFERENCES TO EXTERNAL RESOURCES

All referencesto external resourcesin a JNLP file are specified as URL s using the href attribute. For
example:

<icon href="http://ww.nysite.conlinmges/icon.gif">

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 15

<jar href="cl asses/ MyApp.jar">
<jnlp href="http://ww.nysite.conl App.jnlp">

An href dement can either contain arelative URL or an absolute URL as shown above. A relative URL is
relative to the URL given in the codebase attribute of thej nl p root eement. For example:

<j nl p codebase="http://ww. nysite.conl application/" ... >

A relative URL cannot contain parent directory notations, such as”..". It must denote afile that is stored
in a subdirectory of the codebase. URLsin a JNLP file should always be properly encoded (also known as
"escaped” form in RFC 2396 Section 2.4.2), e.g., a space should be represented as %20 in aHTTP URL.
A INLP Client must used the URL exactly as specified in the INLP file when making a request to the Web
server (See also Section 6.1).

All resources can also be specified using a URL and version string pair. Thus, all elements that support
the href attribute al so support the version attribute, which specifies the version of the given resource that
isrequired. For example,

<jar href="classes/ MyApp.jar" version="1.2">

The version attribute can not only specify an exact version, as shown above, but can also specify alist of
versions, called a Version string. Individual version-id's are separated by spaces. The individual version-
id'sin aVersion string can, optionally, be followed by either astar (*) or aplussign (+). The star means
prefix match, and the plus sign means this version or greater. For example:

<jar href="classes/ MyApp.jar" version="1.3.0 1.2.2*">

The meaning of the aboveis: the JAR file at the given URL that either has the version-id 1.3.0 or hasa
version-id where 1.2.2 isa prefix, e.g., 1.2.2-004. The exact syntax and definition of version-id’'sand
version strings are described in Appendix A.

Section 6 describes how resources are downloaded and how the version information is associated with the
Iesources.

3.5 DESCRIPTOR INFORMATION

The information element contains information intended to be consumed by the INLP Client to integrate
the application into the desktop, provide user feedback, etc. For example:

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 16

<i nformati on>
<title>Cool App 1.0</title>
<vendor >My Cor por ati on</vendor >
<descri pti on>Hel ps you keep cool </ descri pti on>
<description ki nd="tool ti p">Cool App</ descri pti on>
<honepage href="doc/index.htm "/ >
<icon href="icon.gif"/>
<of f1i ne-al | owed/ >
</information>
<information | ocal e="da_DK">
<descri ption>Li dt for kol dt?</description>
<description kind="tooltip">Kd i gt</description>
</information>

locale attribute: The locales for which the information element should be used. Several locales can be
specified, separated with spaces. Each locale is specified by a language identifier, a possibly country
identifier, and possibly a varianiThe syntax is as follows:

| ocal e ::= | anguage [country [variant]]
An information element matches the current locale if i) the locale attribute is not specified or is empty, or
ii) if one of the locales specified in thecale attribute matches the current locale. The rules for matching

the current locale are as follows:
« If language, country, and variant are specified, then they must all match the current locale.

« If only language and country are specified, then they must match the language and country of the
current locale.

« If only language is specified, then it must match the language of the current locale.
The match is case-insensitive.

The IJNLP Client must search through if@rmation elements in the order specified in the JNLP file.
For eachinformation element, it checks if the value specified in lih@le attribute matches the current
localé. If a match is found, the values specified in ithédrmation element will be used, possibly
overriding values found in previousformation elements.

In the above example, the descriptions have be@tized for the Danish locale, so these description

values will be used whenever the current locale is matched by "da_DK". Since the information element for
Danish includes values only for the descriptions, the values for all other elements (title, vendor,etc.) are
taken from the information element without a locale attribute. For all other locales besides Danish, all
values are taken from the information element with no locale attribute. Thus, the locale-independent
information needs only to be specified once, in the information element without the locale attribute.

title element: The name of the application.

vendor element: The name of the vendor of the application.

5 Language codes are defined by 1SO 639, and country codes by | SO 3166.
6 Thecurrent localefor a INLP Client could, for example, bethe onereturned by Local e. get Def aul t () .

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 17

homepage element: Contains a single attribute, href, which isa URL locating the home page for the
application. It can be used by the INLP Client to point the user to a Web page where they can find more
information about the application.

description element: A short statement about the application. Description elements are optional. The
kind attribute defines how the description should be used, it can have one of the following values:

« one-line: If areference to the application is going to appear in onerow in alist or atable, this
description will be used.

« short: If areference to the application is going to be displayed in a situation where thereis room for a
paragraph, this description is used.

 tooltip: A description of the application intended to be used as a tooltip.

Only one description e ement of each kind can be specified. A description e ement without a kind is used
as adefault value. Thus, if a INLP Client wants a description of kind short, and it is not specified in the
JINLPfile, then the text from the description without an attribute is used.

All descriptions contains plain text. No formatting, such as, e.g., HTML tags are supported.
icon element: Theicon can be used by a INLP Client to identify the application to the user.

The optional width and height attributes can be used to indicate the resolution of the images. Both are
measured in pixels.

The optional depth attribute can be used to describe the color depth of the image.

The optional kind attribute can be used to indicate the use of theicon, such as default, selected, disabled,
and rollover.

The optional size attribute can be used to specify the download size of theicon in bytes.

The INLP Client may assume that atypical INLP filewill have at least an icon of 32x32 pixelsin 256
colors of the default kind. The image file can be in either GIF or JPEG format. Its location is specified as
described in Section 3.4, and it is downloaded using the protocols described in Section 6.

offline-allowed element: The optional offline-allowed element indicatesif the application can work
while the client system is disconnected from the network. The default is that an application only works if
the client system is online.

This can be use by a INLP Client to provide a better user experience. For example, the offline
allowed/disallowed information can be communicated to the user, it can be used to prevent launching an
application that is known not to work when the system is offline, or it can be completely ignored by the
JNLP Client. An application cannot assumethat it will never be launched offline, even if thiselement is
not specified.

3.6 AppLicaTioN DESCRIPTORS
An application descriptor either describes an application or an Applet.

JSR-56 - Java™ Network Launching Protocol and APl Specification v1.0.1 18

3.6.1 AppLicaTioN DESCRIPTOR FOR AN APPLICATION
A INLPfileisan application descriptor if the application-desc e ement is specified.

The application-desc e ement contains all information needed to launch an application, given the
resources described by the resources element. For example:

<appl i cati on-desc mai n-cl ass="com exanpl e. MyMai n" >
<ar gument >Ar g1</ ar gunent >
<ar gument >Ar g2</ ar gunent >

</ application-desc>

main-class attribute: The name of the class containing thepubl i ¢ static void
mai n(String[]) method of the application. This attribute can be omitted if the main class can be
found from the Mai n- Cl ass manifest entry in the main JAR file. See Section 5.2.

argument element: Contains an ordered list of arguments for the application.

Section 5.2 describes how an application is launched.

3.6.2 AppLicaTiON DESCRIPTOR FOR AN APPLET
A INLPfileisan application descriptor for an Applet if the applet-desc element is specified.

The applet-desc eement contains all information needed to launch an Applet, given the resources
described by the resources e ements. For example:

<appl et - desc
mai n- cl ass="com nysite. MyAppl et "
docunent base="i ndex. htm "
name="M/Appl et "
wi dt h="500"
hei ght =" 300" >
<par am nane="Par anl" val ue="Val uel"/>
<par am nane="Par an?" val ue="Val ue2"/>
</ appl et - desc>

main-class attribute: Name of the main Applet class. Thisis the name of the main Applet class (e.g.,
com.mysite MyApplet) , as opposed to the HTML <applet> tag's code attribute is a filename (e.g.,
MyApplet.class).

documentbase attribute: Documentbase for the Applet asa URL. Thisis available to the Applet through
the Appl et Cont ext . The documentbaseis provided explicitly since an Applet launched with a INLP
Client is not embedded in a Web page.

name attribute: Name of the Applet. Thisis available to the Applet through the Appl et Cont ext .
width attribute: Width of the Applet in pixels.

height attribute: Height of the Applet in pixels.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 19

param element: Contains a parameter to the Applet. The name attribute contains the name of the
parameter, and the value attribute contains the value. The parameters can be retrieved with the
Appl et . get Par anet er method.

The codebase for the Applet, available through thej ava. appl et . get Codebase method, defaults to
the value of the codebase attribute of the jnlp element. If no value is specified for that attribute, then the
codebase is st to the URL of the JAR file containing the main Applet class.

Section 5.2 describes how an Applet islaunched.

3.7 ExTtensioNn DEscRIPTORS

An extension descriptor can either describe a component extension or an installer extension.

3.7.1 ComPONENT ExTENSION

A INLP fileis a component extension if the component-desc element is specified. A component
extension istypically used to factor out a set of resources that are shared between alarge set applications.
For example, this could be atoolkit for XML parsing. The following shows a sample JNLP fragment that
specifies a component descriptor:

<j nl p>

<resour ces>
<I-- Resources defined by the conponent-desc -->
<jar href="http://ww. nysite.conl ny-conponent/A jar"/>

</ resources>
<conponent - desc/ >
</jnlp>

No j2se elements can be specified as part of the resources. Section 4 describes how these resources
become part of the application that uses the extension.

An extension descriptor is downloaded using the extension download protocol described in Section 6.4.

3.7.2 INSTALLER EXxTENSION

A INLPfileisan ingtaller extension if the installer-desc element is specified. It describes an application
that is executed only once, thefirst timethe INLP fileis used on the local system. The following shows a
sample INLP fragment that specifies an installer descriptor:

<j nl p>
<r esour ces>
<l-- Resources used for installer -->
<jar href="http://ww. nysite.com ny-installer/installer.jar"/>
</ resources>

<installer-desc main-class="comnysite.installer.Min"/>
</jnlp>

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 20

main-class attribute: The name of the class containing the publ i ¢ static voi d

mai n(Stri ng[]) method of an installer/uninstaller for this extension. This attribute can be omitted if
the main class can be found from the Mai n- Cl ass manifest entry in the main JAR file. Thisis described
in detail in Section 5.2.

Theinstaller extension isintended to install platform-specific native code that requires a more
complicated setup than simply loading a native library into the VM, such as installing a JRE or device
driver. Theinstaller executed by the INLP Client must be a Java Technol ogy-based application. Note that
this does not limit the kind of code that can beinstalled or executed. For example, theinstaller could be a
thin wrapper that executes atraditional native installer, executes a shell script, or unzipsa ZIP file with
native code onto the disk.

Theingtaller communicates with the INLP Client using the Ext ensi onl nst al | er Ser vi ce (see
section 7.8 for details). Using this service, theingtaller informs the INLP Client what native libraries
should be loaded into the VM when the extension is used, or, in the case of a JRE ingtaller, inform the
JNLP Client how the installed JRE can be launched.

Installers should avoid having to reboot the client machine if at all possible. While some JNLP Clients
may be able to continue with the install ation/launch after a reboot, this ability is not required.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 21

4 AppLicaTiON RESOURCES

Theresources element is used to specify all the resources, such as Java class files, native libraries, and
system properties, that are part of an application.

4.1 OverviEw

Theresources element has 6 different possible subelements: jar, nativelib, j2se, property, package,
and extension. These are all described in detail in this section.

A resources definition can be restricted to a specific operating system, architecture, or locale using the os,
arch, and locale attributes. For example:

<resour ces>
<j 2se version="1.2"/>
<jar href="lib/nyjar.jar" version="1.2"/>
<ext ensi on
nane="cool audi 0" versi on="1.0"
href ="http://ww. nysi te. con ext/ cool audi 0" >
<part name="np3"/>
</ ext ensi on>
<property nane="keyl" val ue="val uel"/>
<property nane="key2" val ue="val ue2"/ >
</ resources>
<resources 0s="SunCs">
<jar href="lib/notif-plaf.jar"/>
</ resources>

os attribute: Specifies the operating system for which the resources element should be considered. If the
valueisaprefix of theos. nane system property, then the resources element can be used. If the
attribute is not specified, it matches all operating systems.

arch attribute: Specifiesthe architecture for which the resources element should be considered. If the
valueisaprefix of theos. ar ch system property, then the resources element can be used. If the
attribute is not specified, it matches all architectures.

locale attribute: Specifiesthat the resources element is locale-dependent. If specified, the resources
element should only be used if the default locale for the INLP Client matches one of the specified locales.
If the attribute is not specified, then it matches all locales. The locale is specified and matched as
described for the locale attribute of the information element (see Section 3.5).

For the os, arch, and locale attributes several keys can be specified separated with spaces. A spacethat is
part of a key must be preceded with a backdash (\). For example, "Windows\ 95 Windows\ 98" specifies
the two keys "Windows 95" and "Windows 98".

4.2 SETTING SysTEM PROPERTIES

The property e ement defines a system property that will be available through the
Syst em get Property and Syst em get Properti es methods. Is has two required attributes:
name and value. For example:

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 22

<property nane="keyl" val ue="val uel"/>

Properties must be processed in the order specified in the INLPfile. Thus, if two properties define
different values for the same property, then the last value specified in the INLP file is used. For example,
given the following two declarations, n the given order:

<property nane="key" val ue="overwitten"/>
<property nane="key" val ue="used"/>

Then the property key will have the value used.

4.3 SpeciFying Cobe RESOURCES

A INLP file may have two kinds of code resources:

« A jar dement specifiesa JAR filethat is part of the application’s classpath. The JAR filewill be
loaded into the VM using aC assLoader object. The JAR filewill typically contain Java classes
that contain the code for the particular application, but can also contain other resources, such asicons
and configuration files, that are available through theget Resour ce mechanism.

+ A nativelib element specifies a JAR file that contains native libraries’. The INLP Client must ensure
that each file entry in theroot directory of the JAR file (i.e,, /) can beloaded into the running process
by the Syst em | oadLi brary method. It isup to the launched application to actually cause the
loading of the library (i.e., by calling Syst em | oadLi br ary) . Each entry must contain a
platform-dependent shared library with the correct naming convention, e.g., *.dll on Windows, or
lib*.s0 on Solaris.

Thefollowing JNLP file fragment shows how jar and nativelib e ements are used. Notice that native
libraries would typically beincluded in aresources eement that is guarded against a particular operating
system and architecture.

<r esour ces>
<jar href="lib/app.jar"” version="3.2" nmain="true"/>
</ resources>
<resources os="W ndows"/ >
<nativelib href="1ib/w ndows/corelibs.jar"/>
</ resources>
<resources 0s="SunCS" arch="SPARC'>
<nativelib href="lib/solaris/corelibs.jar"/>
</ resources>

The href attributeis the HTTP URL of a JAR file that the application depends on. The optional version
attribute describes the required version, as described in Section 3.4. Section 6 describes how JAR files
are downloaded. An optional size attribute can be used to indicate the download size of the JAR filein

bytes.

The jar element has an main attribute (as shown above) that is used to indicate which JAR file contains
the main class of the Application/Applet (or Installer for an extension). There must be at most one jar
element in a INLP filethat is specified asmain. If no jar element is specified as main, then the first jar
element will be considered the main JAR file.

7 Anativelibrary isalso called aDLL (dynamic linked library) on Windows and a shared object file (.s0) on UNIX systems.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 23

4.3.1 Use oF ManNiFesT FiLES

A INLP Client ignores all manifest entriesin a JAR file specified with the jar element, except the
following:

« The manifest entries used to sign a JAR file are recognized and validated.

« TheMi n- d ass entry in the JAR file specified as main is used to determine the main class of an
application (if it is not specified explicitly in the INLP file).

« The manifest entries used to seal a package are recognized, and the sealing of packages are verified
according to the Extension Mechanism Architecture®. These are the name and sealed entries.

+ Thefollowing manifest entries described by the Optional Package Versioning documentation®;
Extension-Name, Specification-Vendor, Specification-Version, Implementation-Vendor-Id,
Implementation-Vendor, and Implementation-Version are recognized and will be available through the
j ava. | ang. Package class. They are otherwise not used by a INLP Client.

For a JAR file containing native libraries, i.e., specified with the nativelib element, all manifest entries
areignored except the entries used to sign the JAR file.

4.4 Parts AND Lazy DowNLOADS

By default, the jar and nativelib resources must be downloaded eagerly, i.e., they are downloaded and
available locally to the VM running the application before the application is launched. Thejar and
nativelib elements also allow aresource to be specified as lazy. This means that the resource does not
necessarily need to be downloaded onto the client system before the application is launched. However, a
JINLP Client is always allowed to eagerly download all resources if it chooses.

The download attribute is used to control whether aresource is downloaded eagerly or lazily. For
example,

<jar href="sound.jar" downl oad="1azy"/>
<nativelib href="native-sound.jar" downl oad="eager"/>

The default value for the download attribute is eager.

From a functional point of view (i.e., assuming an infinitely fast and reliable network connection), it
makes no differenceif a JAR fileis specified aslazy or eager. The INLP Client must dynamically
download and link in lazily-downloaded JAR files during the execution of the application when they are
needed.

The Java Virtual Machine (JVM) will make requests to the application’s clasd oader when it needs to
resolve a classthat is not currently loaded into the current VM. The INLP Client must make sureto
intercept these requests (e.q., by installing its own classoader), and if there are JAR files specified in the
JINLP file that are currently not loaded into the VM, then the INLP Client must download them and load
them into the application’s VM.

The jar and nativelib elements also contain a part attribute that can be used to group resources together

8 Seehttp://java.sun.com/j2se/1.3/docs/guide/extens ons/spec.html
9 Seehttp://java.sun.com/j2se/1.3/docs/guide/extens ons/versioning.html

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 24

so they will be downloaded at the same time. Whenever ajar or nativelib resource with a non-empty part
attribute is being downloaded, then the INLP Client must ensure that all other resources that have the
same value in the part attribute are also downloaded.

Resources must be downloaded for the following events:

1. All resources specified as non-lazy must be downloaded before the application is launched: This might
trigger download of resources that have the same part name.

2. If the VM triggers aresource to be downloaded through a classloader request, then the classl oader
must not return until the JAR file containing the requested class is downloaded and all resources (jar
or nativelib) that have the same (non-empty) value in the part attribute have been downloaded.

3. JARfilesand parts can also be requested to be downloaded explicitly by the application program using
the INLP API. Thisis described in Section 5.3.

The part names are local to each INLP file. The INLP file for the application might define a part named
sound-support, and an extension that is being used by the INLP descriptor might also define a part named
sound-support. These are considered two different part names. Thus, the scope of a part nameisthe JINLP
file

Native libraries, specified with the nativelib element, can also be downloaded lazily and loaded into the
JVM whilethe application is running. A JVM does not generate requests to the classloader when a native
library is missing. Thus, the only way a native library can be triggered to be downloaded and loaded into
the VM processis by using the part attribute. For example, when the Java classes that implement the
native wrappers for the native libraries are downloaded, that can also trigger the download of the native
library.

The following JNLP fragment shows an example of the use of the jar and nativelib element for lazy
download of resources:

<resour ces>
<jar href="sound.jar"
part="sound" downl oad="I azy"/>
</resources>
<resources o0s="W ndows"/>
<nativelib href="sound-native-win.jar"
part="sound" downl oad="I| azy"/>
</resources>
<resources 0s="SunCs"/>
<nativelib href="sound-native-solaris.jar"
part="sound" downl oad="|azy"/>
</resources>

Thesound. j ar file does not need to be downloaded before the application islaunched, becauseit is
specified as a lazy download. The native code for the sound library is also specified aslazy andisalsoin
the sound part. The download of thesound. j ar filewill trigger the download and loading of the
platform-dependent native code, i.e., either sound- nati ve-wi n. j ar on Windows, or sound-
native-sol aris.jar onSolaris.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 25

4.5 PackaGe ELEMENT

The package element can be used to indicate to the INLP Client which packages are implemented in
which JAR files. The name attribute specifies a package name, and the part attribute specifies which part
must be downloaded in order to load that particular package into the VM. The package e ement can take
several forms:

<package name="com nysite. Main" part="xyz"/>

Specifiesthat the classcom nysi t e. Mai n can be found in the part named xyz.
<package name="com nysite.sound.*" part="abc"/>

Specifiesthat classesin thecom mnysi t e. sound package can be found in the part named abc. The use
of the"*" issimilar tothei nport statement in the Java Programming Language. Thus, itisnot a
general purpose wildcard. Finally, therecursive attribute can be used to specify sub-packages as well.

<package name="com nysite.sound.*" part="stu" recursive="true"/>

Specifiesthat all packagesthat have"com nysi t e. sound. " asaprefix can be found in the part
named stu. The recursive attribute only has an effect when used with a package name, i.e., a name that
endswith ".*",

The package eement only makes sense to use with lazily-downl oaded resources, since all other resources
will already be available to the VM. Thus, it will already know what packages are implemented in those
JAR files. However, it can direct the INLP Client to download the right lazy JAR resources, instead of
having to download each individual resource one at a time to check.

4.6 Java RunTiIME ENVIRONMENT

The j2se dement (subelement of resources) specifies what Java 2 SE Runtime Environment (JRE)

versions an application is supported on, as well as standard parameters to the Java Virtual Machine.
Several JREs can be specified, which indicates a prioritized list of the supported JREs, with the most
preferred version first. For example,

<j 2se version="1.3" initial-heap-size="64n"/>
<j 2se version="1.2">

<resources> ... </resources>
</j2se>

version attribute: Describes supported versions of the JRE. The exact syntax and interpretation of the
version string is described in Section 4.6.1.

initial-heap-size attribute: Indicates the initial size of the Java heap. The modifiers m and k can be used
for megabytes and kilobytes, respectively. For example, "128m" will be the same as specifying
"134217728" (128* 1024* 1024). The modifiers are not case-sensitive.

max-heap-size attribute: Indicates the maximum size of the Java heap. The modifiers m and k can be
used for megabytes and kilobytes, respectively. For example, "128m" will be the same as specifying
"134217728" (128* 1024* 1024). The modifiers are not case-sensitive.

resour ces element: A j2se eement can contain nested resources eements. If the JRE specified in the

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 26

enclosing j2se element is chosen by the INLP Client, then the resources specified in the nested resources
also becomes part of the applications resources, otherwise they areignored. Any j2se element in this
resource element isignored.

4.6.1 Java RunTivE ENVIRONMENT VERSION SPECIFICATION

A JRE can be specified in two ways in the INLP file. It can be specified in a vendor-independent manner
by referring to a particular platform version of the Java 2 platform, or it can be specified by using a
product version of a particular JRE vendor’s implementation.

Definition: Platform version

It isthe version of a particular revision of the Java 2 platform. A platform version describes a
particular set of APIs (classes and interfaces), semantics, and syntax of the Java 2 platform.

Theversion id is of the form 'x.y". Occasionally, dot-dot releases can be released, like 'x.y.z'. This
would typically be in response to a security update. Current versions (as of thiswriting) are 1.2 and
1.3.

The platform version of a JRE can be determined by examining the
java. speci fication. versi on system property.

Definition: Product version
It isthe version of a particular implementation of the Java 2 platform. The product version is vendor-
specific. A product implements a specific platform version. The product version and platform versions
are not necessarily related.

The product version can be found by examining thej ava. ver si on system property™.

If no href attribute is specified, the version string refers to a platform version of the Java 2 platform. For
example,

<j 2se version="1.2">

The JNLP Client can select any JRE implementation that implements this particular revision (as given by
thej ava. speci fi cati on. ver si on system property).

If an href attribute is specified, a vendor-specific JRE is requested. A specific JRE implementation is
uniquely named using a URL and a product version. For example™

<j2se href="http://java. sun. com products/j2se"
version="1.2. 2+"/>

The product version of a JRE implementation can be extracted from thej ava. ver si on system
property. Each JRE vendor will be responsible for providing the unique URL that names their particular

10 Thispracticeisfollowed starting from Java 2 SE JRE 1.3.0 for Sun'simplementations. The java.version system property is"1.2.2" for
several different product versions, such as"1.2.2-w" (final release) and "1.2.2-001" (patch release). Asaworkaround, to determine the
actual product version, usej ava -ful | versi on.

11 Theabove URL isonly used as an example. The exact URL for naming Sun's JREsislikely to be different.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 27

implementations.

Asageneral rule, a product version should typically be specified using a prefix or a greater than notation,
i.e., be postfixed with either aplus (+) or astar (*). Thiswill obviously put less download strain on the
client, since a greater set of VM implementations can be used. However, more importantly, a specific
product version might be obsolete due to, e.g., security problem. If this happens, the user will be unable to
run the particular application, if the INLP file does not specify that a later version with the particular
problem fixed can be used.

Section 6.4 explains how the URL can also be used by the INLP Client to download and install a JRE, if it
is not already present on the local machine.

4.6.2 SeLecting wHAT JRE 10 USE

The INLP Client can choose any of the JRE combinations that are specified in the INLP file. Consider the
following JNLP file fragment:

<resources os="W ndows" arch="x86">
<j2se href="http://java.sun.com ..
<r esour ces>
<jar href="http://ww. nysite.conl appl22.jar"/>
<ext ension name="M/Ext" href="http:..." version="3.4"/>
<property nane="CheckThi s" val ue="Wow'/>
</resources>
</j2se>
</resources>
<r esour ces>
<j 2se version="1.3" initial-heap-size="64n"/>
</resources>

version="1.2.2-w'>

The following two combinations would be legal to launch the application on:

« Sun'sJava2 SE JRE, version 1.2.2-w given that you are running on the Windows operating system
and the x86 architecture.

« Any JRE compatible with the Java 2 platform, version 1.3. No special extensions are needed and no
operating system nor architecture constraints are specified.

If any of the specified JRE/extensions combinations are already installed on the client machine, then the
one listed earliest in the list should be used. If none areinstalled, the INLP client may pick which oneto
download and install. In general, JRE/extensions combinations that appear earlier in thelist should be
preferred over ones that appear later; however, the INLP Client may take other factors into account, such
as minimizing download times. The download and installation procedure for JREs and extensionsis
described in Section 6.

JRE-specific resources can be specified by including a nested resources element inside a j2se element.
The nested resources elements are all ignored, except the one in thej2se eement that is used to launch
the application. Thus, in the above example, if the application islaunched using Sun’s 1.2.2-w JRE, then
the property CheckThi s will be set to Ww, and theapp122. j ar JARfilewill be part of the
application’s resources, as well asthe MyExt extension.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 28

4.7 ExTensioNn RESOURCES

Extension descriptors can be included as part of the resources for an application (or extension) by using
the extension element. For example:

<resour ces>

<ext ensi on nanme="Sound" version="1.0"
href ="http://wwmv. nmyext. coni servl et/ ext/sound-extension.jnlp">
<ext - downl oad ext-part="MD"/>
<ext - downl oad ext -part="MP3"
downl oad="1 azy"
part ="MP3P| ayer"/ >
</ ext ensi on>

</ resources>

The extension element contains three attributes: name, version, and href. The href and the optional
version attributes uniquely identify the extension. This href typically does not point to afile but to, e.g., a
servlet that understands the extension download protocol. The extension itself is described by an extension
descriptor, i.e., aJJNLP File. How the extension descriptor is downloaded is described in Section 6. The
name attribute can be used by the INLP Client to inform the user about the particular extension that is
required, while the extension descriptor (i.e., the INLP fil€) is being downloaded.

Theinclusion of an extension element in aresources dement has the following effect:

« If it points to a component extension (i.e., a INLP file with a component-desc e ement), then the
resources described in the resources eement in that INLP file become part of the application’s
resources. The included resources will have the permissions specified in the component extension.

« If the extension pointsto an extension installer (i.e., aJJNLP file with an installer-desc e ement), then
theingtaller application will be executed, if it has not already been executed on the local machine. This
is described in detail in Section 5.2.

For an extension element that points to component extension, it can aso be specified when the different
parts of the component extension should be downloaded. Thisis done using the ext-download
subelements. In the above example, the extension part MIDI is specified to be downl oaded eagerly, and
the part in the extension descriptor named MP3 must be downloaded at the same time as the part named
MP3Player in the INLP file containing the extension element. Note that a INLP Client is always allowed
to eagerly download all partsif it chooses. Thisisall described in more detail in Section 4.4.

Given the example above, and if the extension descriptor for the Sound extension contains the following
component extension:

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 29

<j nl p>

<r esour ces>
<jar href="http://ww. nyext.comlib/mdi.jar" part="MD "
downl oad="1 azy"/ >
<jar href="http://ww. nyext.com|ib/m3.jar" part="M3"
downl oad="1 azy"/ >
</resources>
<conponent - desc/ >
</jnlp>

Then the extension e ement in the previous example would be, in effect™, replaced with the following
two JAR files specified in the extension descriptor:

<resour ces>
<jar href="http://ww. nyext.com|lib/mdi.jar" downl oad="eager"/>
<jar href="http://ww. nyext.comlib/m3.jar" downl oad="I|azy"
part="MP3Pl ayer"/ >

</ resources>

12 Except for permissions, if the component extension and application descriptor specified different permissionsin the security el ement.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1

30

5 LAuNCHING AND APPLICATION ENVIRONMENT

This section describes the steps a INLP Client must take to download and launch an application, Applet,
library, or extension installer/uninstaller, and the environments these applications will be run in.

5.1 LauNcH SEQUENCE

A INLP Client performs the following steps to launch an application:

1

Retrieve a INLP file. The INLP file might, for example, be supplied as an argument, looked upin a
cache managed by the INLP Client, or downloaded from a URL.

The INLP file can either be an application descriptor or an extension descriptor. For an application-
descriptor, it will describe how to launch an Application or Applet. For an extension descriptor, it will
describe how to launch an installer/uninstaller for the extension.

Parse the INLP file.

The JNLP Client must abort the launch if the INLP file could not be parsed, due to, e.g., syntax errors,
missing fields, or fieldswith illegal values.

There must always be a title and vendor specified based on the current locale.

Determine the right JRE to use. This might require downloading and installing the appropriate JRE.
(See Section 4.6.2.)

Download extension descriptors for all the extensions used in the INLP file. This step continues
recursively with the extensions specified in the downloaded extension descriptors. Section 6 specifies
how extension descriptors are downloaded and cached.

Run the installer for any required extension for which the installer has not yet been run. Thisis
explained in Section 5.6.

Download all eager JAR files (jar and nativelib e ements) specified in the INLP filefrom Step 1 (i.e.,
defined by theresources subelement of the jnlp element), and recursively defined by extension
descriptors. Section 4 describes which resources are eager.

Verify the signing and security reguirements.
Thisisexplained in detail in Section 5.3.

Setup the INLP Services.

Thisisexplained in detail in Section 7.

9.

Launch the application/Applet/installer/uninstal ler.

Thisisexplained in detail in Section 5.2.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 31

5.1.1 LauncH OFFLINE

An application can be launched offline if the launch sequence described above can be completed without
the need to download any resources, i.e., all JAR resourcesin Step 6 must aready be downloaded and
cached, all INLP files must be cached locally, and the JRE must be available locally.

The application itself might not support offline operation. See the description of the offline-allowed
element in Section 3.5.

5.2 LauncHing DeTaILS

5.2.1 LAUNCHING AN APPLICATION
If the INLP file contains the application-desc element, then an application must be launched.
The main class for the application is by default determined by the main-class attribute of the

application-desc element. If thisis not specified, then the Mai n- Cl ass manifest entry for the main
JAR fileis used. If neither is specified, then the launch must be aborted.

The application islaunched by invoking thest ati ¢ public void main(String[] argv)
method of the main class. Thear gv argument is constructed from the argument elements of the
application-descriptor e ement.

5.2.2 LAUNCHING AN APPLET
If the INLP file contains the applet-desc e ement, then an Applet must be launched.

The main class for the Applet is by determined by the main-class attribute of the applet-desc elements.

To launch the Applet, thiswill require setting up an Applet container, instantiating the Applet, and
invoking thei ni t and st art methods.

5.2.3 LAUNCHING AN ExTENSION INSTALLER/UNINSTALLER

If the INLP file contains the installer-desc e ement, then the INLP file defines an extension
installer/uninstaller. This section describes how the installer/uninstaller gets invoked.

The main class for the extension installer/uninstaller is by default determined by themain-class attribute
of the installer-desc element. If thisis not specified, then the Mai n- C ass manifest entry for the main
JAR fileis used. If neither is specified, then the the launch must be aborted.

The extension installer must be executed before the application that depends on it is launched.
Furthermore, theinstaller must only be run once, i.e., the first time the installer extension is downl caded.
However, if the uninstaller islater executed, the INLP Client must ensure that the extension isinstalled
again beforeit is used the next time.

For installation, the INLP Client must invokethe publ i ¢ static void mai n(String[]) method
in the specified classwith the St ri ng array { "i nstal | "} asan argument.

For uninstallation, the INLP Client must invokethepubl i ¢ static void

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 32

mai n(String[]) method in the specified classwith the St ri ng array { "uni nstal | "} asan
argument.

Aningtaller islaunched through an extension descriptor just like an application is launched through an
application descriptor. Thus, an extension installer is by default run in arestricted environment. Theall-
permissions element can be specified in the security section to request unrestricted access. An extension
with an installer will typically need to be signed, so the installer can gain access to the local file system.

5.3 AprpLicaTION ENVIRONMENT
An application launched with a JINLP Client must be run in an environment according to the specification
bel ow.

At the core of the environment is the Java 2 SE platform standard environment, i.e., the environment
provided by the Java 2 SE JRE for all Java Technology-based applications. On top of this core
environment, this specification defines the following additional requirements:

« A preconfigured set of proxies for HTTP, so basic communication with HT TP through the
j ava. net . URL classworks correctly.

« A restricted execution environment (aka. sandbox) for untrusted applications, and two execution
environments for trusted applications. The trusted environments are the all-permissions and j2ee-
application-client environments.

« A basic st of services that are available through the javax.jnlp package.

« The ability to download application resources (such as JAR files) lazily as the application executes.
This download will typically be initiated based on a class resolution request in the VM.

« Validating signing of the JAR files.

The execution environments are described in more detail in the following sections.

5.4 SiGNED APPLICATIONS

The signing infrastructure for INLP is built on top of the existing signing infrastructure for the Java 2
Platform. The Java 2 Platform supports signed JAR files. A JAR file can be signed and verified using,
e.g., thestandardj ar si gner tool from the Java 2 SDK.

An application launched by a JINLP Client is considered to be signed, if and only if:

« All the JAR files are signed (both for jar elements and nativelib elements) and can be verified. A JAR
fileissigned if the signature covers all the entriesin the JAR file®. A single certificate must be used to
sign each JARfile.

« If asigned version of the JNLP file exists, then it must be verified, and it must match the INLP file
used to launch the application. Thisis described in the following subsection.

« Thesame certificate isused to sign all JARfiles (jar and nativelib elements) that are part of asingle

13 Strictly speaking, the manifest and the signature files are not signed, since they contain the signing information.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 33

JINLPfile. Thissimplifies user management since only one certificate needs to be presented to the user
during alaunch per INLP file (and hardly restricts the signing process in practice).

» The certificate used for signing the JAR filesand INLP file (if signed) must be verified against a set of
trusted root certificates.

How the set of trusted root certificates are obtained depends on the particular INLP Client
implementation. Typically, a JINLP Client will be shipped with a set of trusted root certificates for all the
major Certificate Authorities (CAS).

The INLP Client must check a JAR file for signing information beforeit isused, i.e., before a classfile or
another resourceisretrieved fromit. If aJAR fileis signed and the digital signature does not verify, the
application must be aborted. For alazily downloaded JAR file, i.e., a JAR file that is downloaded after the
application is launched, this might require aborting an already-running application.

5.4.1 Sicning oF JNLP FiLes

A INLP file can optionally be signed. A INLP Client must check if a signed version of the INLP file
exists, and if so, verify that it matches the INLP file that is used to launch the application. If it does not
match, then the launch must be aborted. If no signed INLP file exists, then the INLP fileis not signed,
and no check needs to be performed.

A INLPfileissigned by including a copy of it in the signed main JAR file. The copy must match the
JINLP file used to launch the application. The signed copy must be named: JNLP-

| NF/ APPLI CATI ON. JNLP. The APPLI CATI ON. JNLP filename should be generated in upper case,
but should be recognized in any case.

The signed INLP file must be compared byte-wise against the INLP file used to launch the application. If
the two byte streams are identical, then the verification succeeds, otherwise it fails.

As described above, a INLP fileis not required to be signed in order for an application to be signed. This
issimilar to the behavior of Applets, where the Applet tagsin the HTML pages are not signed, even when
granting unrestricted access to the Applet.

5.5 UNTRUSTED ENVIRONMENT

All applications are by default run in an untrusted or restricted environment by a JNLP Client. The
restricted environment is similar to the well-known Applet sandbox, and is designed so untrusted
applications are prevented from intentionally or unintentionally harming the local system. For example,
the restricted environment limits access to local disk and the network.

When run in the restricted execution environment, the following restrictions must be enforced on the
application:

Single download host: All JAR files specified in the resources elements of the INLP file must be
downloaded from the same host, the download host.

Native libraries: No nativelib € ements can be used.

Security Manager: The application must be run with a Secur i t yManager ingtalled. The

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 34

following table list the exact set of permissions™ that must be granted to the application’s resources:

j ava.
j ava.

j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.
j ava.

Security Permissions
net . Socket Per m ssi on
net . Socket Per mi ssi on

util.PropertyPerm ssi
util.PropertyPerm ssi
util.PropertyPerm ssi
util.PropertyPerm ssi
util.PropertyPerm ssi
util.PropertyPerm ssi
util.PropertyPerm ssi
util.PropertyPerm ssi
util.PropertyPerm ssi
util.PropertyPerm ssi
util.PropertyPerm ssi
util.PropertyPernmni ssi
util.PropertyPernmnissi
util.PropertyPernmni ssi
util.PropertyPernmnissi
util . PropertyPernmni ssi
util.PropertyPernmnissi
util.PropertyPernmni ssi

on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

| ang. Runt i mePer mi ssi on

| ang. Runt i mePer mi ssi on

awt . AWPer mi ssi on
awt . AWPer mi ssi on

Target
local host:1024-

<Download Host>
(see above)

javaversion
java.vendor
java.vendor.url
java.class.version
0s.name
os.version
os.arch
file.separator
path.separator
line.separator
java.specification.version
java.specification.vendor
java.specification.name
java.vm.specification.vendor
java.vm.specification.name
javavm.version
java.vm.vendor
javavm.name
exitVM
stopThread

showWindowWithoutWarningBanner

accessEventQueue
(see below for details)

Action
i sten

connect
accept

read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read

Properties: A application has read and write accessto all the properties specified in the INLP file.
Properties specified in the INLP file must overwrite the default value of the above properties.

Event Queue Access: A INLP Client must ensure that an application only has access to its own event
gueue. For example, if a JINLP Client restricts access to the clipboard in the Cl i pboar dSer vi ce by
displaying a security advisor dialog, then the INLP Client must ensure that thisdialog is on an event

gueue that the launched application does not have access to. This ensures that the application cannot
programmatically circumvent the security measures implemented by a INLP Client.

14 The J2SE sercurity permissionsare fully describedinht t p: // j ava. sun. cont j 2se/ 1. 3/ docs/ gui de/

security/ perm ssions. htm)

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1

35

Permission to the event queue can be granted by a JINLP Client by overwriting the
checkAwt Event QueueAccess ontheSecuri t yManager object, instead of explicitly adding
thej ava. awt . AWIPer mi ssi on("accessEvent Queue") permission.

Extensions: The INLP file can request extensions and JREs from any host. An application cannot
make a socket connection back to any of the hosts where JREs or extensions are downloaded from
(unlessit happensto be the same as for the JAR files). Extensions requested from hosts other than the
one that the JAR files were downloaded from must be signed and trusted as per Section 5.4.

This environment is a superset of the Applet sandbox. Since only one application isrun per VM for an
application launched by a INLP Client, the INLP sandbox does not have to restrict accessto, e.g.,
Systemexit.

5.6 TRusTED ENVIRONMENTS

This specification specifies two trusted environments, the all-permissions environment and an
environment that meets the security specifications of the J2EE Application Client environment. Both of
these environments provide unrestricted access to the network and local disk. Thus, an application can
intentionally or unintentionally harm the local system. An application must only be launched if it is
trusted.

The security element in the JNLP fileis used to request the trusted environments:

All Permissions J2EE Application Client Permissions
<security> <security>
<al | - perm ssi ons/ > <j 2ee-appl i cation-client-permnm ssions/>
</security> </security>

The following requirements must be satisfied before a INLP Client can grant an application these access
rights:

1. Theapplication is signed.
2. Theuser and/or the INLP Client trusts the certificate that is used to sign the application.

How a JNLP Client decides to trust a certificate is dependent on the particular implementation. Typically,
a JINLP Client would prompt the user to make a decision on whether to launch the application or not. The
decision can be based on the information stored in the certificate. The decision can be cached, so the
accept action is only required the first time the application is launched.

The application must be run with a Secur i t yManager installed. The following table lists the exact set
of permissions that must be granted to the application’s resources:

Security Permissions Target Action
All Permissions Envir onement
java.security. Al l Perm ssion

J2EE Application Client Environment

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 36

Security Permissions Target Action

j ava. awt . AWrPer ni ssi on accessClipboard

j ava. awmt . AWIPer mi ssi on accessEventQueue

j ava. awt . AWIPer mi ssi on showWindowWithoutWarningBanner

java.l ang. Runti mePer m ssi on exitVM

java.l ang. Runti mePer m ssi on loadLibrary

java.l ang. Runti mePer m ssi on queuePrintJob

j ava. net . Socket Per mi ssi on * connect

j ava. net. Socket Per m ssi on localhost:1024- accept, listen
java.io.FilePermssion * read, write
java.util.PropertyPermn ssion * read

An application running with all-permissions can create its own classloader to, e.g., install code
downloaded from the network. Note that when using custom classloader, the application might
circumvent the caching mechanisms provided by the INLP Client and thereby degrade the performance of
the application.

5.7 ExecutioN EnviRONMENT FOR CoMPONENT EXTENSIONS

All the JAR files specified in the resources elements for a component extension become part of the
application’s resources. JAR files for an extension must execute with the set of permissions specified in the
extension descriptor, which is not necessarily the same set as the application.

By default, the component extension resources are executed in the untrusted execution environment.
However, by using the security element, either of the trusted environments can be requested. Just as for
an application, the resources must be signed and the user must trust the extension before it can berun in
atrusted environment. An extension that contains native code will always need to request trusted accessto
the system.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 37

6 DownNLoADING AND CACHING OF RESOURCES

The JNLP Client can download four different kind of resources from the Web: JAR files, images,
extensions, and JNLP files. This sections describes how they are downloaded, and how they can be cached
on the client system.

JINLP defines three different download protocols, all based on HTTP GET requests:

« A basic download protocol which does not require special Web server support. This can be used for
JAR files, images, and INLP files.

« A version-based download protocol that allows greater control over which resources are downl oaded
and which supports incremental updating of JAR files. This can be used for JAR files and images.

« An extension download protocol which isan addition to the above protocols to include platform-
specific information. Thisis used for INLP files containing extension descriptors.

Resources are named uniquely in a INLP file using the href and version attributes. The following table
summarize the different e ements that refer to external resources and which download protocol s they
support.

Element href attribute version attribute Supported Protocols
jnlp Optional n/a Basic
icon Required Optional Basic, Version-based
jar Required Optional Basic, Version-based
nativelib Required Optional Basic, Version-based
extension Required Optional Basic, Extension
j2se Optional Required Extension

6.1 HTTP FormaT

The HTTP protocal is used to transfer al information between the Web server and the JINLP Client. The
following describes the common request and response format used by all download protocols.

6.1.1 ReQuEesT

Each request consists of an HTTP GET request to the URL for the given resource, and potentially a set of
arguments, passed to the Web server in the query string of the URL. The syntax for arequest is:

request
arguments ::

= href ["?" argunents]

= key "=" value ("&" key "=" value) *

The href in the request is the exact URL for the given resource as specified in the INLP file. The INLP
Client must not encode nor decode this part of the request. The key and value e ements are encoded using
the default encoding for parameters passed in URLSs. To convert a key/value, each character is examined
in turn:

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 38

+ TheASCII characters’a through 'z, ’A’ through 'Z’, "0’ through ’9’, .’ , ***, -, and ’_’ can remain the
same.

« The space character '’ is converted into a plus sign '+

« All other characters are converted into the 3-character string "%xy", where xy is the two-digit
hexadecimal representation of the lower 8-bits of the character.

Thej ava. net . URLEncoder in the Java 2 SE platform implements this conversion.

6.1.2 ResPoONSE

If the HTTP response status code is different than 200 OK, then the request failed and the JNLP Client
must handle this as an error.

If the HTTP request succeeded, JNLP Client must examine the MIME type of the HTTP response to figure
out the kind of resource/response returned.

The following table gives an overview of the possible return MIME types and for which download
protocols and elements they are used. The description of the individual protocols elaborates on this.

Return MIME type Elements Download Protocol
image/jpeg icon Basic, Version-based
image/gif icon Basic, Version-based
application/x-java-archive jar, nativelib Basic, Version-based
application/x-java-archive-diff jar, nativelib Version-based
application/x-java-jnlp-file jnlp, extension, j2se Basic, Extension
application/x-java-jnlp-error All All

If the application/x-java-jnip-error MIME typeis returned, the request failed. The response must be a
single line that contains the numeric status code, followed by a space, followed by a textual explanation.
The following status codes are defined:

Error Code Download Protocol Description
10 All Could not locate resource
11 All Could not locate requested version
20 Extension Unsupported operating system
21 Extension Unsupported architecture
22 Extension Unsupported locale
23 Extension Unsupported JRE version
99 All Unknown error

The description returned from the Web server does not necessarily need to match the above descriptions.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 39

The 10 Could not locate resource isincluded for completeness. Typically, a Web server will use the 404
Not Found HT TP status code to convey this information.

An unmodified Web server can be used with the basic protocol. It will never return the 10 Could not
locate resource error code. It will instead return the 404 HT TP status code.

6.2 Basic DownLoaD ProTocoL

The basic download protocol is used to download resources without any version information, i.e., where
the version attribute is not specified. A resource is downloaded with an HTTP GET request to the Web
server. For example, given the following jar € ement:

<jar href="http://ww. nysite.conic.jar"/>
then the INLP Client must issue the following HTTP GET request:

http://ww. nysite.conic.jar

toretrieve the JAR file.

The INLP Client must examine the HT TP response status code and MIME type to determineif the result
was successful. The valid responses are described in Section 6.1.2

6.3 VERrsion-BASED DownLoAaD ProTocoL

For the version-based download protocol, all resources are uniquely identified by a URL/version-id pair.
Thus, aJNLP Client can at any given time request a specific version of a resource located at a specific
URL.

The INLP Client issuesan HTTP GET request that includes the specific version of the resource that it
needs. The request includesthe field ver si on-i d, which specifies the requested version. For example,
given the following jar element:

<jar href="http://ww.nysite.conm b.jar" version="2.3+"/>
then the INLP Client must issue the following HTTP GET request™:
http://ww. nysite.conic.jar?version-id=2.3%B

The INLP Client must examine the HT TP response status code and MIME type to determineiif the result
was successful. The valid responses are described in Section 6.1.2. For the above jar element, the
application/x-java-archive-diff MIME type cannot be returned. It can only be returned for incremental
requests.

The version string used in the request is not necessarily exact, e.g., 2.3+. The Web server must specify the
exact version-id of the resource that is returned in the response by setting the HTTP header field: x-

j ava-j nl p-versi on-i d. The exact version returned must be one that matches the requested version
string.

15 Theplussign (+) inthe version string is converted into the %2B given the standard encoding for argumentsin URLs

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 40

6.3.1 INcremENTAL UPDATES FOR JAR FILES

JNLP allowsincremental updates to be applied to JAR files. Typically, downloading an incremental
update will be much faster than downloading the new version. Incremental updates are distributed in the
form of a JARDiIff file, which are described in Appendix B.

If the INLP Client has a previous version of a given JAR file already cached, e.g., version 2.2, then this
fact can be specified in the request. The Web server can then potentially provide an incremental update
that can be applied to the existing file, instead of returning the contents of the new file.

An incrementa update is enabled by providing information about the version that is already cached by the
JNLP Client in the HTTP request. Thefield cur r ent - ver si on- i d isused to specify the existing local
version. For example:

http://ww. mysite.com c.jar?version-id=2. 3%2B¤t-version-id=2.2

Thecurrent -versi on-i d must always be exact. If several versions of a given resource arein the
cache, then the highest version-id that is lower than the requested version should be used. The Web server
isnot required to return an incremental update, but could just return the requested JAR file.

The returned contents of the response are the same as for the request without thecur r ent - ver si on-
i d field, except that a JARDIff file might be returned. In that case, the response MIME type must be
application/x-java-archive-diff.

6.4 Extension DownLoab ProTocoL

An extension can either be named with a URL or a URL/version-id pair. If only a URL is specified, the
basic download protocol is used to download the extension descriptor (i.e., the INLPfile). If both a URL
and a version string are specified, the version-based download protocol plus a set of additional fields are
used. The extrafields allow the Web server to return different extension descriptors for different
platforms. The extension download protocol is also used to download a JRE.

The additional fieldsin the request are:

Key Required Description
arch yes The Java system property os. ar ch
0s yes The Java system property 0s. nane.
locale yes Required locales. Several locales can be specified,
separated with spaces.
platform-version-id See below Platform version of requested JRE (only used for the
j2se element)
known-platforms yes Platform versions of the JREs that are already locally

available, i.e., that do not require an additional
download of a JRE. Thisisaversion string.

The INLP Client must examine the HTTP response status code and MIME type to determine if the result
was successful. The valid responses are described in Section 6.1.2.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 41

The known-platforms field is a version string that contains the platform versions of the JREs that the
JINLP Client can useto run an installer, e.g, "1.2 1.3". Thisalows the Web server to make surethat a
potential installer for the extension can be run on the client system. Product versions, such as"1.2.2", are
not appropriate for thisfield.

In arequest, either the version-id or the platform-version-id must be specified. Both cannot be specified at
the same time. The platform-version-id is only applicable when an extension that describesa JRE is
requested. An example of thisis described below.

The version string used in the request is not necessarily exact, e.g., "2.3+". The Web server must specify
the exact version-id (product version) of the extension/JRE that is returned in the response by setting the
HTTP header fidld: x- j ava-j nl p- ver si on-i d. The exact version returned must be one that
matches the regquested version string.

For example, given the following e ement:

<ext ensi on
href="http://wwmv. nysite.con servl et/ext/cool audi o. jnl p"
version="2.3.0 2.3.1"/>

The HTTP request would look like this (given that a Java 2 SE 1.2 JRE is available):

http://ww. nysite. coniservl et/ ext/cool audi 0. j nl p?ar ch=x86&0s=W ndows+95&
| ocal e=en_US&ver si on-i d=2. 3. 0+2. 3. 1&known- pl at f or ms=1. 2

The above request is based on the version-based protocol. That request could also includethecur r ent -
version-id eementif an extension-descriptor was already downloaded.

Given the following € ement:

<extension href="http://wwmv nysite.con ext/cool audi o.jnlp"/>
The HTTP request would be using the basic download protocol, and look like this:
http://ww. nysite. confext/cool audio.jnlp

A JRE can be downloaded using the extension protocol. The j2se element contains two attributes, version
and href, which guide the installation process. For example:

<j 2se version="1.3"
href="http://ww. jrevendor.con servlet/jreinstaller"/>

The version and href parameters serve the same purpose as in the extension element. Hence, the HTTP
GET request will 100k like:

http://ww. jrevendor. com servlet/jreinstaller?arch=x86&s=W ndows+95&l oc
al e=en_US&ver si on-i d=1. 3&nown- pl at f or ns=1. 2

If an href attribute is not specified (which should be the most common case), then a platform version of
the Java 2 platform is requested. If no JRE that implements that particular version is available on the
client machine, the extension download protocol can be used to download an implementation that does.
The platform-version-id argument will be used in the request, instead of the version-id argument. For

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 42

example:
<j 2se version="1.3"/>

The INLP Client is responsible for knowing a URL from which it can download an extension that
implements that particular version. For example, the HTTP GET request could look like:

http://jsp.java. sun. com servl et/ avawsExt ensi onl nst al | er ?ar ch=x86&o0s=W n
dows+95&l ocal e=en_US&pl at f or m ver si on-i d=1. 3&nown- pl at f or ns=1. 2

6.5 CAcHE MANAGEMENT

A INLP Client may cache the downloaded resources locally and is encouraged to do so. Resources are
cached differently depending on whether a version-id is associated with it or not. The following caching
rules apply to nativelib, jar, icon resources, and extension descriptors. How an application descriptor is
downloaded and cached is described in Section 6.6.

6.5.1 CACHING A RESOURCE WITHOUT A VERSION

An entry downloaded using the basic download protocol must be located in the cache based on the URL.
The time stamp obtained from the HTTP GET request in the Last - Modi f i ed header field of the reply
should be stored along with the downloaded resource. The time stamp is used to determine if the copy on
the server is newer.

The INLP Client cannot assume that the HTTP GET request will return the same JAR file for each
request. The INLP Client must periodically check the Web server to see if an updated version is available.
This check is recommended to be performed before an application is launched, but the exact algorithm
used by a INLP Client depends on the particular implementation. For example, if a INLP Client is offline,
the check is not required to be performed.

The above caching rules also apply to extension descriptors downloaded using the extension download
protocol where the version attribute is not specified.

6.5.2 CACHING A RESOURCE WITH A VERSION

An entry downloaded with the version-based download protocol must be cached using the URL and the
(exact) version-id from the HT TP response as a key. When alookup is performed given aURL and a
version string, any resource cached using the given URL and with aversion-id that matches the version
string can be returned.

The INLP Client can assume that the reply contents from an version-based request with an exact version-
id is always the same. Thus, no time-stamp information needs to be stored. The resourceis uniquely
identified with the URL and version-id. If a given resource (URL/version-id pair) is already found in the
cache, then the Web server does not need to be contacted to check for a newer version. Thus, using the
version-based download protocol can provide better performance at startup, since potentially fewer
connections need to be made back to the Web server.

The above caching rules also apply to extension descriptors downloaded using the extension download
protocol where the version attribute is specified.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 43

6.5.3 ManaGING THE CACHE

The INLP Client is responsible for managing the cache of downloaded resources. The INLP Client must
make sure that the following invariant is maintained:

» Resources belonging to a particular application are never removed from the cache while the
application isrunning.

This rule makes sure that the application developer can make assumptions about resources being in the
cache while the application isrunning. In particular, all resources that are eagerly downloaded are going
to be available locally in the cache during the entire program execution.

The exact policy and algorithms used to manage the cache are implementation-dependent. A reasonable
policy might be to first clear out resources that are marked |azy before the ones marked eager.

The INLP Client can also manage extensionsin any way it seesfit. They can be uninstalled at any given
point or be kept around permanently. If the extension uninstaller isinvoked, then another request for the
extension will require it to be downloaded again and the extension installer to be rerun.

6.6 DownLoADING AND CACHING OF APPLICATION DESCRIPTORS

Application descriptors, i.e., INLP files, are handled specially, since they are not necessarily downl oaded
by the INLP Client itself. Often, they will be downloaded by a Web browser or by other means.

The href attributein jnlp element is used to specify the location of the INLP file itself. For example:
<jnlp href="http://ww.nysite.conl app/ App.jnlp">

If the href attribute is specified, then the JNLP file can be cached, and it also alows a JNLP Client to
query the Web server for a newer version of the INLPfile, i.e., for the application. A INLP Client can use
thisfeatureto, e.g., inform the user of updates to already-cached applications, or to automatically update
applications during non-peak hours. In order to do this, a INLP Client could keep track of the INLP files
it has downloaded, and then periodically query the Web server for new versions.

A INLP file must be downloaded with an HTTP GET request to the specified URL. The INLP Client must
usethelLast - Modi fi ed header field returned by the Web Server to determine if anewer INLPfileis
present on the Web server.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 44

7 JNLP API

A INLP Client must provide a set of additional servicesto the launched application through the

j avax. j nl p package These serviceslet an application interact with the surrounding environment in a
secure and platform-independent way. The INLP API is availableto all applications whether or not a
particular application is trusted. Appendix D contains alist of all methods and classes with complete
signatures. For a detailed description of the INLP API, consult the INLP APl Reference, v1.0.

A serviceis structured as an object implementing a specific INLP service interface. The following services
are defined:

« Basi cServi ce, which provides a service similar to the AppletContext. This service must always be
provided.

« Downl oadSer vi ce, which allows an application to interact with the INLP Client to check if
application resources are available locally, and to request them to be downloaded. This service must
always be provided.

« Fi |l eOpenSer vi ce, which allows applications running in the untrusted environment to import files
from the local disk. This serviceis optional.

« Fil eSaveSer vi ce, which allows applications running in the untrusted environment to export files
tothelocal disk. Thisserviceisoptional.

« dipboardServi ce, which allows applications running in the untrusted environment access to the
clipboard. This serviceis optional.

« PrintService, which alows applications running in the untrusted environment access to printing.
This serviceis optional.

« Persi stenceServi ce, which allows applications running in the untrusted environment access to
store state locally on the client. This serviceis optional.

« Extensionlnstall er Servi ce, which provides an interface for extension installers to
communicate with the INLP Client. This serviceisrequired.

A service object isfound using the static| ookup method on the Ser vi ceManager class. This method
will, given a St ri ng representing the service name, return an object implementing the given service.
Thel ookup method must be idempotent, i.e., returning the same object for each request for the same
service. If aserviceisnot available, the Unavai | abl eSer vi ceExcept i on must be thrown. The

get Ser vi ceNanes methods returns the names of all supported services.

The recommended name for a serviceis the fully qualified name of the interface, e.g.,
j avax.j nl p. Basi cServi ce.

7.1 THe BAasicSERvICE SERVICE

Thej avax. j nl p. Basi cSer vi ce service provides a set of methods for querying and interacting with
the environment similar to what the Appl et Cont ext providesfor a Java Applet.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 45

The get Codebase method returns the codebase for the application. Thiswill typically be the URL
specified in the codebase attribute in the jnlp e ement. However, if the INLP file does not specify this
attribute, then the codebase is defined to be the URL of the JAR file containing the class with themai n
method.

Thei sO f | i ne method returnstrueif the application is running without access to the network. An
application can use this method to adjust its behavior to work properly in an offline environment. The
method provides a hint from the INLP Client. The network might be unavailable, even though the INLP
Client indicated that it was, and vice-versa.

The showDocunent method displays the given URL in a Web browser. This may be the default browser
on the platform, or it may be chosen by the INLP Client some other way. This method returns false if the
request failed, or the operation is not supported.

Some platforms might not support a browser, or the INLP Client might not be configured to use a
browser. Thei sWebBr owser Suppor t ed method will return trueif a Web browser is supported,
otherwise false.

7.2 THE DowNLOADSERVICE SERVICE

Thej avax. j nl p. Downl oadSer vi ce service alows an application to control how its own resources
are cached.

The service alows an application to determine which of its resources are currently cached, to force
resources to be cached, and to remove resources from the cache.

The following three query methods return t r ue if a given resource, a given part, or a given part of a
given extension is currently cached, respectively. The methods must always return f al se for resources
that do not belong to the current application, i.e., are not mentioned in the INLP file for the application.

+ i sResourceCached
+ |sPart Cached
+ | sExt ensi onPart Cached

The following three methods instruct the JINLP Client to download a given resource, a given part, or a
given part of a given extension, respectively. The methods block until the download is completed or an
error occurs. The methods must always fail for resources that do not belong to the current application, i.e.,
are not mentioned in the INLP file for the application.

+ | oadResource
+ | oadPart
+ | oadExt ensi onPar t

The above methods take an Downl oadSer vi ceLi st ener object as argument that can track the
progress of the download. A default implementation of alistener can be obtained by the
get Def aul t Pr ogr essW ndow method.

The following three methods instruct the INLP Client to remove a given resource, a given part, or a given
part of a given extension from the cache, respectively. The remove request is a hint to the INLP Client
that the given resourceis no longer needed. The methods must do nothing if a resource not belonging to
the given application is requested to be removed.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 46

+ renmoveResource
» renovePart
+ renoveExt ensi onPart

7.3 THe FILEOPENSERVICE SERVICE

Thej avax. j nl p. Fi | eOpenSer vi ce service provides methods for importing files from the local
disk, even for applications that are running in the untrusted execution environment.

Thisinterface is designed to provide the same level of disk access to potentially untrusted Web-depl oyed
applications that a Web devel oper has when using HTML. HTML forms support the inclusion of files by
displaying afile open dialog.

A file open dialog can be displayed to the user with the following two methods:

« openFil eDi al og
« openMiltiFileD al og

The methods allow selection of exactly one file or multiple files, respectively.

The contents of afilearereturned in aFi | eCont ent s object. A Fi | eCont ent s encapsulates the
name of the selected file and provides metered access to the contents. The contents can be accessed using
input streams, output streams, or random access. The JNLP Client might enforce size limits on the
amount of data that can be written.

TheFi | eCont ent s only knows the name of the selected file excluding the path. Thus, the open dialog
cannot be used to obtain information about the user’s directory structure.

The INLP Client can render the open file dialog in any way it seesfit. In particular, it could show an
additional security dialog or warning message to the user before showing the dial og.

The methods will return nul | if the user chose to cancel the operation. An | OExcept i on will be
thrown if the operation failed for some other reason than the user did not select afile.

On INLP Clients running on disk-less systems, or systems that do not wish to implement these features,
the Ser vi ceManager must throw an Unavai | abl eSer vi ceExcepti on when thisserviceis
looked up.

7.4 THE FILESAVESERVICE SERVICE
Thej avax. j nl p. Fi | eSaveSer vi ce service provides methods for exporting files to the local disk,
even for applications that are running in the untrusted execution environment.

Thisinterface is designed to provide the same level of disk access to potentially untrusted Web-depl oyed
Java applications, that a Web browser provides for contents that it is displaying. Most Web browsers
provide a Save As... dialog as part of their user interface.

A file save dialog can be displayed to the user by invoking thesaveFi | eDi al og or the
saveAsFi | eDi al og methods.

JSR-56 - Java™ Network Launching Protocol and APl Specification v1.0.1 47

The INLP Client can render the save file dialog in any way it seesfit. In particular, it could show an
additional security dialog or warning message to the user before an action is committed.

The methods return aFi | eCont ent s object representing the file that was saved, or return nul | if the
user chose to cancel the operation. An | CExcept i on will bethrown if the operation failed for some
other reason than the user decided not to save thefile.

On INLP Clients running on disk-less systems, or systems that do not wish to implement this service, the
Ser vi ceManager must throw an Unavai | abl eSer vi ceExcepti on when thisserviceislooked

up.
7.5 THE CLIPBOARDSERVICE
Thej avax. j nl p. i pboar dServi ce service provides methods for accessing the shared system-

wide clipboard, even for applications that are running in the untrusted execution environment.

A INLP Client implementing this service should warn the user of the potential security risk of letting an
untrusted application access potentially confidential information stored in the clipboard, or overwriting
contents stored in the clipboard.

The interface consists of two methods:

+ setContents
+ getContents

The two methods are analogues to the methods on j ava. awt . dat at ransf er. O i pboar d, except
that the INLP API does not support owner notification or retrieving the name of the contents.

7.6 THE PRINTSERVICE SERVICE
Thej avax. j nl p. Print Servi ce service provides methods for accessing to printing even for
applicationsthat are running in the untrusted execution environment.

This service is designed to provide (somewhat) similar access to printing as an HTML-based application
has through the browser. Using this service, an application can submit a print job to the INLP Client. The
JNLP Client can then show this request to the user, and if accepted queue the request to the printer.

The service providesapr i nt method that can either take a Pageabl e object or aPr i nt abl e object.
The method will return t r ue if the printing succeeded, otherwise it will return f al se.

The interface also provides a set of methods to get the current page format:

« get Def aul t Page
« showPageFor mat Di al og

7.7 THE PERSISTENCESERVICE SERVICE

Thej avax. j nl p. Per si st enceSer vi ce service provides methods for storing data locally on the
client system, even for applications that are running in the untrusted execution environment.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 48

The serviceis designed to be (somewhat) similar to that which the cookie mechanism providesto HTML-
based applications. Cookies allow a small amount of data to be stored locally on the client system. That
data can be securely managed by the browser and can only beretrieved by HTML pages which originate
from the same URL as the page that stored the data.

Each entry in the persistent data store is stored on the local system, indexed by aURL, i.e, using a URL as
akey. This providesa similar hierarchical structure as atraditional file system. An application is only
allowed to access data stored with a URL (i.e., key) that is based on its codebase. The URL must follow
the directory structure of the codebase for a particular application. For example, given the codebase,
http://ww. mysi te. com apps/ Appl/, the application would be allowed to access data at the
associated URLS:

« http://ww. nysite.conl apps/ Appl/
« http://ww. nysite. conl apps/
« http://ww. nysite. conl

This scheme allows sharing of data between different applications from the same host. For example, if
another application islocated at ht t p: / / www. nysi t e. coml apps/ App2/ , then they can share data
between them intheht t p: / / www. nysi te. conl andhttp://ww. nysi te. conl apps/
directories. Any data that Appl wants to keep private from App2 can be stored at

http://ww. nysite. conl apps/ App1l.

The following methods are used to create, access, and delete entries. These methods all take a URL asan
argument.

+ create
+ get
+ delete

The get method returns the contents of theentry asaFi | eCont ent s object. TheFi | eCont ent s
interface provides metered access to the underlying data, i.e., ensures that the application does not write
more data to disk than it isallowed. Thecr eat e method takesan | ong argument that specifies that
maximum size of the given entry. If this maximum size limit is exceeded when performing a write
operation, an | OExcept i on must be thrown. The application can usetheset MaxSi ze method on a
Fi | eCont ent s object to request additional space.

A INLP Client should keep track the amount of storage that a given application uses. The total amount of
storage is the sum of the maximum sizes of all the entries that the application has access to. The default
limit of the amount of total storage available to an application is INLP Client specific, but should typically
not be less than 128KB.

Thedel et e method removes an entry from the persistence cache.

The get Nanes method returns the names of all entriesin a given directory.

Data stored using this mechanism isintended to be alocal copy of data stored on aremote server. Using a
local cache can improve performance, as well as make it possible to run applications offline. The
individual entries can be tagged as being either i) cached, meaning that the server has an up-to-date copy,
ii) dirty, meaning that the server does not have an up-to-date copy, or iii) temporary, meaning that this
file can always be recreated. The following two methods support tags:

+ setTag

+ getTag

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 49

The tag information can be used by a INLP Client when cleaning out the persistent cache. Entries that are
tagged as temporary should be removed first, followed by entries that are tagged as cached, and then
finally the dirty ones should be removed. The INLP Client should always warn the user that unsaved data
might be lost when removing an entry marked as dirty.

7.8 THE ExTENSIONINSTALLERSERVICE SERVICE

Thej avax. j nl p. Ext ensi onl nst al | er Servi ce service provides methods for an extension
installer to manipulate the progress screen during a download and install, as well as methods for
informing the INLP Client whereto find the resourcesiit installed.

The Ext ensi onl nst al | er Ser vi ce isonly available when the INLP Client is running an extension
installer. Otherwise, the Ser vi ceManager should throw an Unavai | abl eSer vi ceExcepti on
when this service is looked up.

An extension installer is a Java Technol ogy-based application that is responsible for installing platform-
dependent code and settings for an extension.

The extension installer provides three kinds of servicesto the installer:

« The ability to manipulate a progress window provided by the INLP Client. The calls can beignored if
the INLP Client does not implement a progress window.

» Query the INLP Client about the preferred location for the installation and previous installations.

« Update the INLP Client with information about the native parts of an extension. Thiswill either be a
list of native libraries that need to be linked into an application that uses the extension, or if the
extension installs a JRE, how the JRE isto be launched.

The manipulation of the progress window is done using the following methods:

set St at us

set Headi ng

updat ePr ogr ess

hi dePr ogr essBar

« hi deSt at usW ndow

Theinclusion of a progress window APl should makeit possible to write installers that ook good on a
wide variety of platforms. The INLP Client will be responsible for the look and feel of the window. The
progress window is assumed to already be showing when the extension installer islaunched, e.g., it has
just been used by the INLP Client itself to show that the extension is being installed.

Theget | nst al | Pat h provides a preferred location where the extension should beinstalled. A INLP
Client will typically create a directory under its own tree and return the location of that directory. The
installer can then install all required files without creating a conflict with other installed extensions.

Theget Ext ensi onVer si on and get Ext ensi onLocat i on methods return the exact version-id
and location of the extension that is being installed. Thisinformation would typically already be known by
theinstaller, but is provided so that it is possible to write generic installers that work with multiple
versions.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 50

Theset JREI nf o and set Nat i veLi br ar yl nf o methods are used to update the INLP Client with
information about the native code an installer might install. Only one of them can be called by a particular
extension. The set JREI nf o isused by an extension that installs a JRE. It must be called with the path
to the executable that launchesthe WM. Theset Nat i veLi br ar yl nf o method is used to instruct the
JNLP Client to include the given directory in the search path for native libraries when the

System | oadLi brary method is used.

Thei nst al | Succeeded method must be called when the installer finished successfully. The

i nst al | Fai | ed method must be called if theinstallation failed. In case of afailed install, theinstaller
isresponsible for providing an error message to the user. After either of the methods are called, the
installer should quit, and the INLP Client should regain control and continue with its operation, e.g.,
continue launching the application that forced the extension to be downloaded and installed, or abort the
launch if the the installation failed. An installer should not call Syst em exi t .

The following method can be used by an installer to figure out the location of already installed JREs:

« getlnstall edJRE

This allow an extension to potentially update a particular JRE by installing JAR filesinto, e.g., the
['i b/ ext directory.

The normal sequence of events for an extension installer is:

Step 1: Get the ExtensioninstallerService from the ServiceManager. The installer can then use the
get I nstal | Pat h tofind out the preferred installation directory.

Step 2: Update status, heading, and progress as the install progresses (set St at us, set Headi ng,
updat eProgress, and hi deProgressBar). If the ingtaller uses its own progress window, the
JINLP Client supplied one can be disposed using the hi deSt at usW ndow method.

Step 3: If successful, inform the INLP Client about the installed contents, by invoking either
set JREI nf o or set Nat i veLi br aryl nf o, asappropriate for the installer.

Step 4: Inform the JINLP Client about the completion of the ingtaller. If successful, invoke
i nstal | Succeeded. If not successful invoke i nst al | Fai | ed. This will cause the INLP Client to
regain control, and continue with the launch sequence. An installer that must reboot the client system
indicates that in thecall of i nst al | Succeeded.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 51

8 FuTture DIRECTIONS

Many excellent suggestions for additions to this specification have been made by contributors from both
our partners and internal reviewers. The desire for a timely specification constrains the amount of work
that can be done for any particular revision of the specification, and so some of these suggestions cannot
be incorporated in this version of the specification. However, by including these items as future directions,
we indicate that we will be considering them for inclusion into a future revision of the specification.

Thefollowing items are under consideration:

« Fine-grained security directives

+ URL-independent naming for extensions and JAR resources to enhance scalability and reliability of
downloads.

Please note that the inclusion of an item on thislist is not a commitment for inclusion into a future

revision of this specification, only that the item is under serious consideration and may be included into a
future revision.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 52

A VERrsIoN IDs AND VERSION STRINGS

This section is simply aformal encoding of common conventions for dot-notations. The formal syntax is
to ensure predictable behavior of the download protocols.

This section describes the formal syntax of the version-id's and version strings used in this specification.
A version-id is an exact version that is associated with aresource, such asa JARfile. A version string isa
key that can match one or more version-id's.

The version-id used in this specification must conform to the following syntax:

version-id ::= string (separator string) *

string = char (char) *

char = Any ASCI| character except a space, a separator or a
nodi fi er

separator ::="." | "-" | "_"

A verson string isalist of version-id's separated with spaces. Each version-id can be postfixed with a’+’
to indicate a greater-than-or-equal match, a"*" to indicated a prefix match, or have no postfix to indicate
an exact match. The syntax of version-stringsis:

version-string ::= element (" " elenent) *
el enent c:=version-id nodifier?
m)dlfler - = mgn | "W n

A version-id can be described as a tuple of values. A version-id string is broken in parts for each separator
(., -, or). For example, "1.3.0-rc2-w" becomes (1,3,0,rc2,w), and "1.2.2-001" becomes (1,2,2,001).

Each dement in atupleistreated as either a numeric or alphanumeric. Two el ements are compared
numerically if they can both be parsed as Javai nt s, otherwise they are compared lexicographically
according to the ASCII value®® of theindividual characters.

Before two version-id's are compared the two tuples are normalized. This means that the shortest tupleis
padded with O (zero element) entries at the end. Two normalized tuples are aways of the same length. For
example, comparing (1, 3) and (1, 3, 1), will result in comparing (1, 3, 0) and (1, 3, 1).

A.1 ORDERING

The version-id’s are ordered by the natural ordering of dot-notations.

A normalized version-id tuple can be written as (Head Tail), where Head isthefirst element in the tuple,
and Tail istherest”.

Given two version-id's, (HA TA) and (HB TB), then (HA TA) isgreater than (HB TB) if and only if:
« HA isgreater than HB, or

« HAisequa to HB, TA and TB are not empty, and TA isgreater than TB recursively

16 The specification restricts the version-id's to only contain ASCI| characters due to the well-defined ordering of ASCII characters based
on the ASCI| value.
17 Thisistreating thetupleaseg. aLigplist.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 53

In other words, A isgreater than B if, when represented as normalized tuples, there exists some element
of A which isgreater than the corresponding element of B, and all earlier elements of A arethesameasin
B.

For example, "1.2.2" isgreater than "1.2", and lessthan "1.3" (i.e,, in effect, comparing "1.2.2", "1.2.0",
and "1.3.0")

A.2 Exact MAaTCH
Two normalized version-id's, (HA TA) and (HB TB), match exactly if and only if:

« HAisequa to HB and
« TA and TB are both empty, or TA matches TB exactly.

In other words, A is an exact match of B if, when represented as normalized tuples, the elements of A are
the same as the el ements of B.

For example, given the above definition "1.2.2-004" will be an exact match for "1.2.2.4", and "1.3" isan
exact match of "1.3.0".

A.3 Prerix MaTcH

Given two version-id's, (HA TA) and (HB TB), then first (HB TB) is padded with O (zero element) entries
at theend so it isat least the same length asthe (HA TA) tuple.

(HA TA) isaprefix match of (HB TB) if and only if:
« HA isequal to HB, and

« TAisempty, or

« TAisaprefix match of TB

In other words, A isa prefix match of B if, when represented as tuples, the elements of A are the same as
thefirst elements of B. The padding ensuresthat B has at least as many elements as A.

For example, given the above definition "1.2.1" will be a prefix match to "1.2.1-004", but not to "1.2.0" or
"1.2.10". The padding step ensuresthat "1.2.0.0" isa prefix of "1.2". Note that prefix matching and
ordering aredistinct: "1.3" is greater than "1.2", and lessthan "1.4", but not a prefix of either.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 54

B JARDIFr FormAT

Thisformat describes how to apply incremental updatesto a JAR file. An incremental update can be
applied to an already-downloaded JAR file to yield an updated version. Downloading an incremental
update to an existing version can significantly reduce download time compared to downl oading the new
JARfile, if the existing and new JAR files have most partsin common.

For example, given two JARfiles:from jar andto. | ar, then a JARDIff can be computed that
describes the changes that need to be applied tof rom j ar toyieldto. j ar.

B.1 MIME Tvypre anD DerauLT FiLe ExTENSION

The default MIME type and extension that should be associated with a JARDIfT file are shown in the
following table.

Default MIME Type Default Extension
appl i cation/ x-java-archive-diff .jardiff

B.2 ConTENTS
The JARDIff fileisitsdf a JAR file.

In the following, it is assumed that the original JAR fileisnamed f r om j ar , and the updated JAR fileis
namedt o. j ar . A JARDiIff betweenfrom jar andto. j ar containsthe following:

+ Theset of entriesthat existint 0. j ar but donot existinfrom j ar, except for entries that have
just been renamed.

« Theset of entriesthat existinfrom j ar, but are modifiedint o. j ar.

« Anindex file, META- | NF/ | NDEX. JD, that describesthe contentsof thet o. j ar file, and how it
relatestothef rom j ar file. Thel NDEX. JD filename should be generated in upper case, but should
be recognized in any case. Thisfileis always required.

Thus, a JARDIfT file contains complete copies of each new or changed file. It does not provide a way to
incrementally update individual fileswithin a JAR file.

B.3 TrEe INDEX FILE

Theindex file describes what entries from from.jar toinclude in the target file. The file contains
commands of the form:

Command Meaning
version <id> Version of the JARDIff protocol.
renove <entry> Do not includethe <entry>fromfrom jar into.j ar
move <frome <to> Include the entry <from>fromfrom jar into.jar as<to>

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 55

The backdash (V) is used as an escape character. A backdash is represented as two slashes (\\), and a space
as’\’, i.e, adash followed by a space. The backdash is used only as an escape character; it does not
define any special characters. For example, \t represents the character t, and \i represents the character i.

Theindex file must be UTF-8 encoded.
The commands are used as follows:

« Theversi on command must always be the first entry in aindex file. The current version is 1.0.

« Ther enpve command means that the given filefromfrom j ar should not beincluded in the
target file.

« Thenpve command meansthat the given filefromf r om j ar should beincluded in the target file
asthe given name.

For each entryinthet o. j ar filethere can either bear enove command in theindex file, one or more
nove commands, or no entry at all. A nove and r enove command for the samefileisinvalid.

A filethat does not appear in any move or remove command, and which does not appear in the JARDiff
file, is copied from from.jar to to.jar as-is. Also, afile that does not appear in any move or remove
command, which does appear in the JARDIff file, is copied from the JARDIff file to to.jar as-is. These two
rules reduce the size of the index file.

B.4 AppLying A JARDIFF
The following pseudo-code shows how to apply a JARDIff:

Let old-nanes = List of entries in old.jar

// Add new and/or updated entries. This al so takes
// care of inplicit renpves
for each x in JARDI ff file except META-1NF/ | NDEX. JD
add the contents of x fromJARD FF to target JAR as X
remove x from ol d- nanes
end
// Ilterate through index file
for each cmd in META-INF/ 1 NDEX. JD do
if cnd is "remove x' then
renmove x from ol d- nanes
else if cnd is "nove x y' then
add the content of x fromold.jar to target JAR as y
remove x from ol d- nanes
end
end
// Do all inplicit noves
for each x in ol d-nanes
add the content of x fromold.jar to target JAR as x
end

A JARDIff file that will cause the same filename to be added to the target filetwiceisinvalid. Thus, the
add command must fail if it the samefileis added twice, and an error should be signaled.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 56

B.5 Siening anD JARDIFF FILES

JARDIff files themselves are not signed. Instead, they can contain the signing information for the target
file i.e, the manifest, signature instructions, and digital signature. Thus, thetarget JAR fileissigned if it
can be verified using the standard procedure for asigned JAR file.

B.6 ExampLE

The following shows an example of a JARDIff file.
Assume that the JAR file, app. j ar, contains version 1.0 of an application:

coni nysi t e/ app/ Mai n. cl ass

coni nysi t e/ app/ W ndowl. cl ass
coni nysi t e/ app/ Qui ckHack. cl ass
coni nysite/ app/ stuff. properties

Later on, version 1.1 of the application isreleased. The new app. j ar contains the following entries:

coni nysi t e/ app/ Mai n. cl ass
coni nysi t e/ app/ W ndowl. cl ass
coni nysi t e/ app/ W ndow2. cl ass
com nysi t e/ app/ app. properties

An inspection of the differences between app. j ar version 1.0 and version 1.1 yieds the following
differences:

« Mai n. cl ass has been updated with support for a new application window.

« stuff.properties hasbeenrenamedtoapp. properti es.

+ W ndow2. cl ass hasbeen added in version 1.1.

» Qui ckHack. cl ass doesnot exist in version 1.1

« W ndowl. cl ass isunchanged.

The difference between app.jar version 1.0 and 1.1 can be expressed by a JARDIff file containing the
following entries (all from version 1.1):

VETA- | NF/ | NDEX. JD
coni nysi t e/ app/ Mai n. cl ass
coni nysi t e/ app/ W ndow2. cl ass

Thus, the JARDIff file contains all the new or modified filesin version 1.1 compared to 1.0. The
INDEX.JD filewill list the following requests:

version 1.0

renove com nysite/ app/ Qui ckHack. cl ass
nove com nysite/app/stuff.properties coninysite/app/app. properties

JSR-56 - Java™ Network Launching Protocol and APl Specification v1.0.1 57

C JNLP FiLe Document Type DeriNTION

The following contains an annotated XML Document Type Definition (DTD) for the the INLP file.

C.1DOCTYPE

<IDOCTYPE j nl p-descriptor PUBLIC "-//Sun M crosystens, |nc//DTD JNLP
Descriptor 1.0//EN' "http://java. sun.coni products/j2se/ dtds/
jnlp_1_0.dtd">

C.2DTD

<I--

The root elenent for the JNLP file.
-->

<IELEMENT jnlp (information+, security?, resources*, (application-desc |
appl et-desc | component-desc | installer-desc))>

<I--

The spec attribute of the jnlp el ement specifies what versions of the
JNLP specification a particular JNLP file works with. The default value
is "1.0+".

-->

<I ATTLI ST jnlp spec CDATA #| MPLI ED>

<l--

The version attribute of the jnlp elenent specifies the version of the
application being | aunched, as well as the version of the JNLP file
itself.

-->

<I ATTLI ST j nl p version CDATA #l VPLI ED>

<l--

The codebase attribute of the jnlp el enent specifies the codebase for
the application. This is also used as the base URL for all relative URLs
in href attributes.

-->

<I ATTLI ST j nl p codebase CDATA #| MPLI ED>
<I--
The href attribute of the jnlp elenment contains the |ocation of the JNLP

file as a URL.
-->

<I ATTLI ST jnl p href CDATA #l MPLI ED>

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 58

<I--

The information el enent contains various descriptive informtion about
the application being | aunched.

-2

<IELEMENT information (title?, vendor?, homepage?, description*, icon*,
of fl'i ne-al | owed?) >

<I--
The |l ocale attribute of the information el ement specifies the locale for

which this informati on el ement shoul d be used.
-->

<I ATTLI ST informati on | ocal e CDATA #l MPLI ED>

<I--

The title elenment contains the name of the application
-->

<! ELEMENT title (#PCDATA)>

<I--

The vendor el enent contains the nanme of the vendor
-->

<! ELEMENT vendor (#PCDATA) >

<I--
The honepage el ement contains a href to the honepage for the

application.
-->

<! ELEMENT homepage EMPTY>
<I--
The href attribute of the homepage el enent specifies the URL for the

honepage.
-->

<! ATTLI ST homepage href CDATA #REQUI RED>

<I--
The description el ement contains a description of the application
-->

<! ELEMENT descri pti on (#PCDATA) >

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 59

<I--

The kind attribute for the description elenent indicates the use of a
description elenent. The values are: i) one-line, for a one-line
description, ii) short, for a one paragraph description, and iii)
tooltip, for a tool-tip description. Longer descriptions should be put
on a separate web page and referred to using the honepage el enent.

-->

<! ATTLI ST description kind (one-line | short | tooltip) # MPLIED>

<I--

The icon el enment describes an image for an application
-->

<! ELEMENT i con EMPTY>

<I--

The href attribute of an icon contains a URL to a |ocation on the web
containing an inmage file for an icon. The file nust be in either JPEG or
G F format.

-->

<I ATTLI ST i con href CDATA #REQUI RED>

<I--

The version attribute of an icon contains a string describing the
version of the inage that is requested.

-->

<! ATTLI ST i con versi on CDATA #l MPLI ED>

<l--

The width attribute of the icon el ement describes the width of the icon
in pixels.

-->

<I ATTLI ST i con wi dt h CDATA #l MPLI ED>

<l--

The height attribute of the icon el ement describes the height of the
icon in pixels.

-->

<I ATTLI ST i con hei ght CDATA #l MPLI ED>
<l--

The kind attribute of the icon el enent describes the use of the icon
-->

<I ATTLI ST icon kind (default | selected | disabled | rollover)
"defaul t">

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 60

<I--
The depth attribute of the icon el enment describes the color depth of the

i mage in bits-per-pixel. Common values will be 8, 16, or 24.
-->

<I ATTLI ST i con depth CDATA #l MPLI ED>

<l--

The size attribute of an icon elenent indicates the size of an icon file
in bytes.

-->

<I ATTLI ST icon size CDATA #l MPLI ED>

<I--

The offline-allowed element indicates if the application can be | aunched
offline. Default value (i.e., if the element is not specified) is
onl i ne.

-->

<! ELEMENT offli ne-all owed EMPTY>

<I--
The security elenment describes the security requirements of the

appl i cati on.
-->

<l ELEMENT security (all-perm ssions?, j2ee-application-client-
per m ssi ons?) >

<l--
The al |l -perm ssions el ement indicates that the application needs ful

access the the local system and network.
-->

<l ELEMENT al | - per m ssi ons EMPTY>

<I--

The j 2ee-application-client-perm ssions el enent indicates that the
application needs the set of perm ssions defined for a J2EE application
client.

-->

<l ELEMENT j 2ee-application-client-perm ssions EMPTY>

<I--
The resources el enent contains an ordered set of resources that

constitutes an application
-->

<l ELEMENT resources (j2se | jar | nativelib | extension | property
package) * >

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 61

<I--
The os attribute of the resources el enent specifies for which operating

systemthis el ement shoul d be considered.
-->

<I ATTLI ST resources os CDATA #l MPLI ED>

<I--

The arch attribute of the resources el ement specifies for what platform

this el enent shoul d be consi dered.
-->

<! ATTLI ST resources arch CDATA #l MPLI ED>

<I--

The locale attribute of the resources el enment specifies for which

| ocal es this el enent should be consi der ed.
-->

<! ATTLI ST resources | ocal e CDATA #| MPLI ED>

<I--
The j 2se el ement describes a supported JRE version and an optiona

resources element to be used by the particular JRE
-->

<l ELEMENT j 2se (resources*)>

<I--
The version attribute of the j2se el enent describes the versions of the

JRE that this application is supported on
-->

<I ATTLI ST j 2se versi on CDATA #REQUI RED>
<I--
The href attribute of the j2se el enent specifies the |ocation where the

JRE shoul d be downl oaded from
-->

<! ATTLI ST j 2se href CDATA #l MPLI ED>
<l--
The initial-heap-size attribute of the j2se el ement specifies the

initial size of the object heap
-->

<I ATTLI ST j 2se initial - heap-si ze CDATA #l MPLI ED>

JSR-56 - Java™ Network Launching Protocol and APl Specification v1.0.1 62

<I--

The max- heap-size attribute of the j2se el enent specifies the preferred
maxi mum si ze of the object heap

-->

<I ATTLI ST j 2se max- heap-si ze CDATA #l MPLI ED>

<I--

The jar element describes a jar file resource.
-->

<! ELEMENT j ar EMPTY>

<I--
The href attribute of the jar element contains the location of a jar

file as a URL.
-->

<I ATTLI ST jar href CDATA #REQUI RED>

<I--
The version attribute of a jar el ement describes the version of a

particular JAR file that is requested.
-->

<I ATTLI ST j ar versi on CDATA #l MPLI ED>

<I--
The main attribute of a jar el ement indicates whether this el enent

contains the main cl ass.
-->

<IATTLIST jar main (true|false) "fal se">

<I--
The downl oad attribute of a jar elenent indicates if this el enent nust

be downl oaded before an application is |aunched (eager), or not (lazy).
-->

<I ATTLI ST jar downl oad (eager | |azy) "eager">

<I--

The size attribute of a jar element indicates the size of a JARfile in
byt es.

-->

<I ATTLI ST jar size CDATA #l MPLI ED>

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 63

<I--

The part attribute of a jar el enment describes the name of the group it
bel ongs t oo.

-->

<I ATTLI ST j ar part CDATA #l MPLI ED>

<I--

The nativelib el ement describes a resource containing native files.
-->

<! ELEMENT nativeli b EMPTY>

<I--
The href attribute of a nativelib el enent contains the |ocation of a

nativelib file as a URL.
-->

<I ATTLI ST nativelib href CDATA #REQU RED>

<I--

The version attribute of a nativelib el enent describes the version of a
particular nativelib file that is requested.

-->

<! ATTLI ST nativelib versi on CDATA #l MPLI ED>

<I--
The downl oad attribute of a nativelib element indicates if this el enent
nmust be downl oaded before an application is |aunched (eager), or not

(lazy).
-->

<I ATTLI ST nativelib downl oad (eager | |azy) "eager">

<I--

The size attribute of a nativelib elenent indicates the size of a
nativelib file in bytes.

-->

<I ATTLI ST nativelib size CDATA #l MPLI ED>

<l--

The part attribute of a nativelib el enment describes the nane of the part
it belongs to.

-->

<I ATTLI ST nativelib part CDATA #l MPLI ED>
<l--
The extension el enent describes an extension that is required in order

to run the application.
-->

<I ELEMENT ext ensi on (ext-downl oad*) >

JSR-56 - Java™ Network Launching Protocol and APl Specification v1.0.1 64

<I--
The version attribute of an extension el ement specifies the version of

the extension requested.
-->

<! ATTLI ST extensi on versi on CDATA #l MPLI ED>

<I--

The nane attribute of an extension elenent specifies the nane of the
ext ensi on.

-->

<! ATTLI ST extensi on nane CDATA #l MPLI ED>

<I--
The href attribute of an extension elenment specifies the |ocation of

t he extension.
-->

<I' ATTLI ST extensi on href CDATA #REQUI RED>

<I--
The ext-downl oad el ement defines how parts of the extension are

downl oaded.
-->

<! ELEMENT ext -downl oad EMPTY>

<I--
The ext-part attribute of an ext-downl oad el ement descri bes the nane of

a part in the extension.
-->

<! ATTLI ST ext - downl oad ext-part CDATA #REQUI RED>

<I--
The downl oad attribute of an ext-downl oad el ement describes if the

resource may be lazily downl oaded.
-->

<I ATTLI ST ext-downl oad downl oad (| azy| eager) "eager">

<l--
The part attribute of an ext-downl oad el enent describes the nane of the

part it belongs to in the current JNLP file.
-->

<I ATTLI ST ext -downl oad part CDATA #| MPLI ED>

<l--
The property el enment describes a name/value pair that is available to

the | aunched application as a system property.
-->

<! ELEMENT property EMPTY>

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 65

<l--

The nane attribute of the property el enent describes the nane of a
system property.

-->

<I ATTLI ST property name CDATA #REQUI RED>

<I--

The val ue el enent describes the value of a system property.
-->

<! ATTLI ST property val ue CDATA #REQU RED>

<l--
The package el ement defines a rel ationship between a Java package or

class name and a part.
-->

<! ELEMENT package EMPTY>

<l--
The nane attribute of the package el enent describes the nane of a

package or cl ass.
-->

<! ATTLI ST package name CDATA #REQUI RED>

<I--

The part attribute of the package el ement describes the part that
contai ns the specified package or cl ass.

-->

<! ATTLI ST package part CDATA #REQUI RED>

<I--
The recursive attribute of the package el enent indicates if all sub-

packages of this particul ar package is al so included.
-->

<I ATTLI ST package recursive (true|false) "fal se">
<I--
The application-desc el ement describes how to | aunch a Java- based

application. It contains information about the main class and argunents.
-->

<! ELEMENT appl i cati on-desc (argunent*)>
<l--
The main-class attribute of the application-desc el ement describes the

main class of an application.
-->

<I ATTLI ST applicati on-desc nai n-cl ass CDATA #l MPLI ED>

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 66

<I--

The argurment el ements describe the ordered set of argunents to an
application. These argunents will be passed into the rmain nmethod of the
application’s main class.

-->

<! ELEMENT ar gunent (#PCDATA) >

<l--

The appl et-desc el ement descri bes how to | aunch a Java Technol ogy- based
Applet. It contains information about, e.g., the nmain class, size, and
par aneters.

-->

<! ELEMENT appl et - desc (parant)>

<I--
The docunent base attribute of the applet-desc el ement describes the

docunent base for the applet as a URL
-->

<! ATTLI ST appl et - desc docunent base CDATA #| MPLI ED>

<l--
The main-class attribute of the appl et-desc el enent describes the nane

of the main Applet class.
-->

<! ATTLI ST appl et -desc mai n-cl ass CDATA #REQUI RED>

<l--
The nane attribute of the appl et-desc el enent describes the nane of the

Appl et .

-->
<I ATTLI ST appl et -desc name CDATA #REQUI RED>

<I--
The width attribute of the applet-desc el enent describes the wi dth of

the Applet in pixels.
-->

<I ATTLI ST appl et -desc wi dt h CDATA #REQUI RED>

<I--
The height attribute of the applet-desc el enent describes the hei ght of

the Applet in pixels.
-->

<l ATTLI ST appl et -desc hei ght CDATA #REQUI RED>
<I--
The param el enent describes a paraneter to an Applet.

-->

<! ELEMENT par am EVMPTY>

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 67

<I--

The nane attribute of the param el enent describes the name of a
par anet er.
-->

<I ATTLI ST param name CDATA #REQUI RED>

<I--

The value attribute of the param el enent describes the value of a
par anet er.
-->

<! ATTLI ST param val ue CDATA #REQUI RED>
<I--

The conponent -desc el enent specifies a conponent extension

-->

<! ELEMENT comnponent -desc EMPTY>

<l--

The installer-desc el enent specifies an installer extension

-->

<IELEMENT installer-desc EMPTY>

<I--

The main-class attribute of the installer-desc el enent describes the

main class for the installer/uninstaller.
-->

<! ATTLI ST instal | er-desc nmi n-cl ass CDATA #l MPLI ED>

JSR-56 - Java™ Network Launching Protocol and APl Specification v1.0.1 68

D ArpLicATION PROGRAMMING INTERFACE

Thisisaligting of theinterfaces, classes, and exceptions that compose the INLP API. For detailed
descriptions of these members and their methods, please see the INLP APl Reference, v1.0.

D.1 JNLP API Packace SummaRry

The table below summarizes the classes and interfaces comprising the INLP API.

Package javax.jnlp Service Name Required
BasicService javax.jnlp.BasicService yes
DownloadService javax.jnlp.Downl oadService yes
FileOpenService javax.jnlp.FileOpenService no
FileSaveService javax.jnlp.FileSaveService no
ClipboardService javax.jnlp.ClipboardService no
PrintService javax.jnlp.PrintService no
PersistenceService javax.jnlp.PersistenceService no
ExtensionlnstallerService javax.jnlp.ExtensioninstallerService yes
UnavailableServiceException <not a service> n/a
DownloadServicel istener <not a service> n/a
FileContents <not a service> n/a
JNLPRandomA ccessFile <not a service> n/a
ServiceManager <not a service> n/a
ServiceManager Stub <not a service> n/a

D.2 SeErvicEMANAGER
public final class ServiceManager

static public Object |ookup(String nane) throws
Unavai | abl eServi ceExcepti on;
static public String[] getServiceNanes();
static public void setServi ceManager St ub(Servi ceManager St ub st ub);

D.3 ServicEMANAGERSTUB
public interface ServiceManager Stub
public Object |ookup(String nanme) throws

Unavai | abl eServi ceExcepti on;
public String[] getServiceNanes();

D.4 BasicServicE
i mport java. net. URL;

JSR-56 - Java™ Network Launching Protocol and APl Specification v1.0.1

69

public interface BasicService

public URL get CodeBase();

public boolean isOfline();

publ i c bool ean showbDocunent (URL url);
publ i c bool ean i sWWebBr owser Supported();

D.5 DowNLOADSERVICE
i mport java. net. URL;

public interface Downl oadService

publ i c bool ean i sResourceCached(URL ref, String version);

public bool ean i sPartCached(String part);

public bool ean i sPartCached(String[] parts);

publ i ¢ bool ean i sExtensi onPart Cached(URL ref, String version, String
part);

publ i ¢ bool ean i sExtensi onPart Cached(URL ref, String version,
String[] parts);

public void | oadResource(URL ref, String version,
Downl oadSer vi ceLi stener listener) throws | CException;

public void |l oadPart(String part, Downl oadServicelLi stener |istener)
throws | OException;

public void |l oadPart(String[] parts, Downl oadServiceListener |istener)
throws | OException;

public void | oadExtensi onPart (URL ref, String version, String part,
Downl oadSer vi ceLi stener |istener) throws | CException;

public void | oadExtensi onPart (URL ref, String version, String[] parts,
Downl oadSer vi ceLi stener listener) throws | CException;

public void renoveResource(URL ref, String version) throws | CException;

public void renovePart(String part) throws | COException;

public void renovePart (String[] parts) throws | OException;

public void renoveExtensionPart (UR ref, String version, String part)
throws | OException;

public void renoveExtensionPart(UR ref, String version, String parts)

throw | CExcepti on;

publ i ¢ Downl oadSer vi celLi st ener get Def aul t Progr essW ndow() ;

D.6 FiLEOPENSERVICE

i mport java.io. | OException;

public interface Fil eQpenService

public FileContents openFileDi alog(String pathH nt, String[]
exts) throws | CException;

public FileContents[] openMultiFileDialog(String pathHi nt,
String[] exts) throws | OException;

D.7 FILESAVESERVICE

i mport java.io.l OException,;
i mport java.io.lnputStream

public interface Fil eSaveService

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 70

public FileContents saveFileDi alog(String pathH nt, String[]
extensions, |nputStreamstream String nanme) throws | OException;

public FileContents saveAsFilebDi al og(String pathH nt, String[]
extensions, FileContents contents) throws | COException;

D.8 CLiPBOARDSERVICE
i mport java.awt.datatransfer. Transferabl e;

public interface O i pboardService

public Transferable getContents();
public void setContents(Transferable contents);

D.9 PrINTSERVICE

i mport java.awt.print.Pageabl e;
i mport java.awt.print.Printable;
i mport java.awt.print.PageFormat;

public interface PrintingService

publ i c PageFor mat get Def aul t Page();

publ i c PageFor mat showPageFor mat Di al og(PageFor mat page) ;
publ i c bool ean print(Pageabl e docunent);

publ i c bool ean print(Printable painter);

D.10 PEersISTENCESERVICE

i mport java.io.lnputStream

i mport java.io.CQutput Stream

i mport java.io. RandomAccessFil e;

i mport java.io.l OException;

i mport java.io. Fil eNot FoundExcepti on;
i mport java. net. URL;

i mport java. net. Mal f or mredURLExcepti on

public interface PersistenceService

public static int final CACHED = O;
public static int final TEMPORARY = 1,
public static int final DRTY = 2;

public long create(URL url, |ong maxSize)

throws Mal f or mnedURLException, | OException;
public FileContents get(URL url)

throws Mal f or nedURLExcepti on, Fil eNot FoundException, | OExcepti on;
public void delete(URL url)

throws Mal f or mnedURLException, | OException;
public String[] getNames(URL url)

throws Mal f or mnedURLException, | OException;
public int get Tag(URL url)

throws Mal f or mnedURLException, | OException;
public void setTag(URL url, int tag)

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 71

throws Mal f or mnedURLException, | OException;

D.11 ExTtensioNINSTALLERSERVICE
public interface ExtensionlnstallerService

public String getlnstall Path();

public String get ExtensionVersion();

public URL get ExtensionLocation();

public void hideProgressBar();

public void hideStatusWndow);

public void setHeadi ng(String heading);

public void setStatus(String status);

public void updat eProgress(float val ue);

public void install Failed();

public void install Succeeded(bool ean needsReboot);

public void setJREInfo(String platfornVersion, String jrePath);
public void setNativeLibraryDirectory(String path);

public String getlnstall edJRE(URL | ocation, String productVersion);

D.12 FiLeCoNTENTS
i mport java.io. | OException;

public interface FileContents

public String getName() throws | OExcepti on;

publ i c bool ean canRead() throws | OException;

publ i c bool ean canWite() throws | CException;

public |ong getLength() throws | COException;

public | ong get MaxLength() throws | CException;

public | ong set MaxLengt h(l ong maxl ength) throws | OException;
public I nputStream getlnputStream() throws | OException;

public Qutput Stream get Qut put Strean{bool ean overwite) throws

| OExcepti on;

publ i c JNLPRandomAccessFi | e get RandomAccessFil e(String node) throws
| OExcepti on;

D.13 JNLPRanbomAccessFILE
i mport java.io. | OException;

public interface JNLPRandonmAccessFil e
extends java.io. Datal nput, java.io.DataCut put

public void close() throws | OException;

public long length() throws | OException;

public long getFilePointer() throws | OException;

public int read() throws | OException;

public int read(byte [] b, int off, int len) throws | OException;
public int read(byte [] b) throws | CException;

public void readFul ly(byte [] b) throws | OException;

public void readFull y(byte b[], int off, int Ien) throws |OException;
public int skipBytes(int n) throws | CException;

18 Thej ava. i 0. RandomAccessFi | e isnot used since most of its methods are final. Thus, it would be impossible to implement a
JINLP Client that returns a subclass of RandomAccssFi | e that implements, e.g., metered accessto the file system.

JSR-56 - Java™ Network Launching Protocol and API Specification v1.0.1 72

publ i c bool ean readBool ean() throws | OException

public byte readByte() throws | OException

public int readUnsi gnedByte() throws | CException
public short readShort() throws | OException

public int readUnsi gnedShort() throws | CException
public char readChar() throws | OException

public int readlnt() throws | OException

public |l ong readLong() throws | OException

public float readFloat() throws | OException

publ i c doubl e readDoubl e() throws | CException

public String readLine() throws | OException

public String readUTF() throws | OException

public void seek(long pos) throws | CException

public void setLength(long newiLength) throws | COException
public void wite(int b) throws | OException

public void wite(byte b[]) throws | OException

public void wite(byte b[], int off, int Ien) throws |COException
public void witeBool ean(bool ean v) throws | OCException
public void witeByte(int v) throws | OException

public void witeShort(int v) throws | CException
public void witeChar(int v) throws | OException

public void witelnt(int v) throws | OException

public void witeLong(long v) throws | CException
public void witeFloat(float v) throws | COException
public void witeDoubl e(double v) throws | CException
public void witeBytes(String s) throws | OException
public void witeChars(String s) throws | OException
public void witeUTF(String str) throws | OException

D.14 UNavAILABLESERVICEEXCEPTION
public class Unavail abl eServi ceExcepti on extends Exception

Unavai | abl eSer vi ceException();
Unavai | abl eServi ceException(String nsg);

D.15 DowNLOADSERVICEL ISTENER
public interface Downl oadServi celLi st ener

public void progress(java.net.URL url, java.lang.String version
| ong readSoFar, long total, int overall Percent);

public void validating(java.net.URL url, java.lang.String version
long entry, long total, int overallPercent);

public void upgradi ngArchive(java.net.URL url, java.lang.String version
i nt patchPercent, int overall Percent);
public void downl oadFail ed(j ava.net.URL url, java.lang.String version);

JSR-56 - Java™ Network Launching Protocol and APl Specification v1.0.1 73

